论文标题
胶体单层的沉积物向下倾斜平面
Sedimentation of a Colloidal Monolayer Down an Inclined Plane
论文作者
论文摘要
我们研究了胶体单层的驱动集体动力学,使倾斜平面沉积。平行于底壁的重力力的作用会在每个胶体周围产生一个流动,并且随着局部密度的增加,胶体之间的流体动力相互作用会加速沉积。这导致创造了通用的“三角形”不均匀密度曲线,并在领先的前沿沿下坡方向移动的行进密度冲击。与胶体单层中的密度冲击不同,由施加的扭矩而不是力驱动[物理。 Rev. Fluids,2(9):092301,2017],在沉积过程中的密度前部在长时间内保持稳定,即使它在数十颗颗粒直径的序列上产生了粗糙度。通过实验测量和基于粒子的计算机模拟,我们发现汉堡方程可以沿沉积方向建模,因为时间的函数非常好,如果非线性保护法占集体沉积速度的亚线性依赖性,则可以进行适度的改进。
We study the driven collective dynamics of a colloidal monolayer sedimentating down an inclined plane. The action of the gravity force parallel to the bottom wall creates a flow around each colloid, and the hydrodynamic interactions among the colloids accelerate the sedimentation as the local density increases. This leads to the creation of a universal "triangular" inhomogeneous density profile, with a traveling density shock at the leading front moving in the downhill direction. Unlike density shocks in a colloidal monolayer driven by applied torques rather than forces [Phys. Rev. Fluids, 2(9):092301, 2017], the density front during sedimentation remains stable over long periods of time even though it develops a roughness on the order of tens of particle diameters. Through experimental measurements and particle-based computer simulations, we find that the Burgers equation can model the density profile along the sedimentation direction as a function of time remarkably well, with a modest improvement if the nonlinear conservation law accounts for the sub-linear dependence of the collective sedimentation velocity on density.