论文标题

在最大数量的元素数量上,成对生成对称群的偶数

On the maximal number of elements pairwise generating the symmetric group of even degree

论文作者

Fumagalli, Francesco, Garonzi, Martino, Maróti, Attila

论文摘要

令$ g $为对称的学位$ n $。令$ω(g)$为$ g $的子集$ s $的最大大小,以便$ \ langle x,y \ rangle = g $每当$ x,y in s $和$ x \ neq y $和$ x \ neq y $和$σ(g)$时,$ c $的最低符号是$ g $的$ g $。我们证明,这两个函数$σ(g)$和$ω(g)$在$ \ frac {1} {2} {2} \ binom {n} {n/2} $时,当$ n $偶数时。这与S. Blackburn的结果一起,意味着$σ(g)/ω(g)$倾向于$ 1 $ as $ n \ to \ infty $。此外,我们在$ω(g)$上给出$(1-O(1))n $的下限,该$与有限简单组的分类无关。我们还计算出足够大的$ n $的图表的集合数,定义为:顶点是$ g $的元素,如果$ \ langle x,y \ rangle \ geq a_n $,则将两个顶点$ x,y $连接。

Let $G$ be the symmetric group of degree $n$. Let $ω(G)$ be the maximal size of a subset $S$ of $G$ such that $\langle x,y \rangle = G$ whenever $x,y \in S$ and $x \neq y$ and let $σ(G)$ be the minimal size of a family of proper subgroups of $G$ whose union is $G$. We prove that both functions $σ(G)$ and $ω(G)$ are asymptotically equal to $\frac{1}{2} \binom{n}{n/2}$ when $n$ is even. This, together with a result of S. Blackburn, implies that $σ(G)/ω(G)$ tends to $1$ as $n \to \infty$. Moreover, we give a lower bound of $(1-o(1))n$ on $ω(G)$ which is independent of the classification of finite simple groups. We also calculate, for large enough $n$, the clique number of the graph defined as follows: the vertices are the elements of $G$ and two vertices $x,y$ are connected by an edge if $\langle x,y \rangle \geq A_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源