论文标题

不确定性意识到的身体指导的代理任务

Uncertainty-Aware Physically-Guided Proxy Tasks for Unseen Domain Face Anti-spoofing

论文作者

Wu, Junru, Yu, Xiang, Liu, Buyu, Wang, Zhangyang, Chandraker, Manmohan

论文摘要

脸部反欺骗(FAS)试图将真正的面孔与任何类型的欺骗攻击产生的假面相处。由于攻击的多种多样,获得跨越所有攻击类型的训练数据是令人难以置信的。我们建议利用物理线索,以更好地对看不见的领域进行更好的概括。作为一个特定的演示,我们使用物理指导的代理提示,例如深度,反射和材料来补充我们的主要反欺骗(又称可实现检测)任务,直觉是跨域中的真实面孔具有一致的面部几何形状,类似面部的几何形状,最小的反射和皮肤材料。我们介绍了一种新颖的不确定性注意注意力方案,该方案独立学习以权衡主要和代理任务的相对贡献,从而阻止了传统关注模块的过度自信问题。此外,我们提出了属性辅助的硬采矿,以使学习过程中的特征脱离易感性 - 呈卵巢液化特征。我们对具有内部和数据库间协议的公共基准进行了广泛的评估。我们的方法在FAS的未见领域概括中实现了出色的性能。

Face anti-spoofing (FAS) seeks to discriminate genuine faces from fake ones arising from any type of spoofing attack. Due to the wide varieties of attacks, it is implausible to obtain training data that spans all attack types. We propose to leverage physical cues to attain better generalization on unseen domains. As a specific demonstration, we use physically guided proxy cues such as depth, reflection, and material to complement our main anti-spoofing (a.k.a liveness detection) task, with the intuition that genuine faces across domains have consistent face-like geometry, minimal reflection, and skin material. We introduce a novel uncertainty-aware attention scheme that independently learns to weigh the relative contributions of the main and proxy tasks, preventing the over-confident issue with traditional attention modules. Further, we propose attribute-assisted hard negative mining to disentangle liveness-irrelevant features with liveness features during learning. We evaluate extensively on public benchmarks with intra-dataset and inter-dataset protocols. Our method achieves the superior performance especially in unseen domain generalization for FAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源