论文标题
重新思考文本细分:一种新颖的数据集和一种特定文本的完善方法
Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach
论文作者
论文摘要
文本细分是许多现实世界中文本相关的任务,例如文本样式传输和场景文本删除的先决条件。但是,面对缺乏高质量的数据集和专门研究,这一关键先决条件已被视为许多作品的一个假设,并且在很大程度上被当前的研究所忽略了。为了弥合这一差距,我们提出了TextSeg,这是一个大规模的罚款文本数据集,具有六种注释:单词和角色的边界多边形,掩码和转录。我们还介绍了文本改进网络(TEXRNET),这是一种新颖的文本细分方法,可适应文本的独特属性,例如非凸边界,各种纹理等,通常会对传统分割模型施加负担。在我们的TEXRNET中,我们提出了特定的特定网络设计,以应对此类挑战,包括关键功能汇总和基于注意力的相似性检查。我们还介绍了三图和歧视损失,这些损失显示出对文本细分的显着改善。在我们的TextSeg数据集和其他现有数据集中进行了广泛的实验。我们证明,与其他最先进的分割方法相比,TEXRNET始终将文本细分性能提高了近2%。我们的数据集和代码将在https://github.com/shi-labs/rethinking-text-mentemation上提供。
Text segmentation is a prerequisite in many real-world text-related tasks, e.g., text style transfer, and scene text removal. However, facing the lack of high-quality datasets and dedicated investigations, this critical prerequisite has been left as an assumption in many works, and has been largely overlooked by current research. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated text dataset with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. In our TexRNet, we propose text specific network designs to address such challenges, including key features pooling and attention-based similarity checking. We also introduce trimap and discriminator losses that show significant improvement on text segmentation. Extensive experiments are carried out on both our TextSeg dataset and other existing datasets. We demonstrate that TexRNet consistently improves text segmentation performance by nearly 2% compared to other state-of-the-art segmentation methods. Our dataset and code will be made available at https://github.com/SHI-Labs/Rethinking-Text-Segmentation.