论文标题

复制内核希尔伯特空间的功能自回归过程

Functional Autoregressive Processes in Reproducing Kernel Hilbert Spaces

论文作者

Wang, Daren, Zhao, Zifeng, Willett, Rebecca, Yau, Chun Yip

论文摘要

我们研究功能自回旋〜(FAR)过程的估计和预测,这是一种建模功能时间序列数据的统计工具。由于远处过程的无限维质,现有文献通过降低维度来解决其推论,其中的理论结果需要(不现实的)假设完全观察到的功能时间序列。我们提出了一个基于再现内核希尔伯特空间(RKHS)的替代推理框架。具体而言,提出了一种核规范正则化方法,用于直接从功能时间序列的离散样本中估算远距离过程的过渡算子。我们为远方过程得出了代表定理,该定理可以实现无限二维推断而无需降低尺寸。在(更现实的)假设下,我们只有有限的离散样本,因此建立了尖锐的理论保证。与文献中的最新方法相比,进一步进行了广泛的数值实验和能源消耗预测的实际数据应用,以说明所提出的方法的有希望的性能。

We study the estimation and prediction of functional autoregressive~(FAR) processes, a statistical tool for modeling functional time series data. Due to the infinite-dimensional nature of FAR processes, the existing literature addresses its inference via dimension reduction and theoretical results therein require the (unrealistic) assumption of fully observed functional time series. We propose an alternative inference framework based on Reproducing Kernel Hilbert Spaces~(RKHS). Specifically, a nuclear norm regularization method is proposed for estimating the transition operators of the FAR process directly from discrete samples of the functional time series. We derive a representer theorem for the FAR process, which enables infinite-dimensional inference without dimension reduction. Sharp theoretical guarantees are established under the (more realistic) assumption that we only have finite discrete samples of the FAR process. Extensive numerical experiments and a real data application of energy consumption prediction are further conducted to illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源