论文标题

天气自然变异性对建筑物信封的热表征的影响

Influence of weather natural variability on the thermal characterisation of a building envelope

论文作者

Juricic, Sarah, Goffart, Jeanne, Rouchier, Simon, Foucquier, Aurélie, Cellier, Nicolas, Fraisse, Gilles

论文摘要

建筑物信封的热表征通常是通过控制加热功率设置点的现场测量来执行的。对乘员友好的测量条件提供了相反的信息信息。尽管有占用,但仅边界条件就会在更大程度上促进能量平衡。因此,非侵入性条件提出了这种实验的可重复性和相关性。本文提出了一种原始数值方法,以评估在可变天气条件下,估计信封的总体热抗性的重复性和准确性。综合建筑能源模型是产生多个合成数据集的参考模型。每个位置都使用不同的天气数据集运行,并用于校准适当的模型,该模型提供了热阻力估计。然后根据用于数据生成的特定天气条件来评估估计的准确性。原始性还在于使用随机生成的天气数据集对6个天气变量进行所有估计值进行不确定性和全局灵敏度分析。该方法学应用于来自单层房屋案例研究的模拟数据,该案例研究用作参考模型。由校准的随机RC模型推断出热电阻估计。发现必须进行11天的时间才能实现强大的估计。案例研究中的空气变化率很大,解释了为什么发现室外温度和风速具有很大影响。

The thermal characterisation of a building envelope is usually best performed from on site measurements with controlled heating power set points. Occupant-friendly measurement conditions provide on the contrary less informative data. Notwithstanding occupancy, the boundary conditions alone contribute to a greater extent to the energy balance. Non intrusive conditions question therefore the repeatability and relevance of such experiment.This paper proposes an original numerical methodology to assess the repeatability and accuracy of the estimation of an envelope's overall thermalresistance under variable weather conditions. A comprehensive building energy model serves as reference model to produce multiple synthetic datasets. Each is run with a different weather dataset from a single location and serves for the calibration of an appropriate model, which provides a thermal resistance estimate. The estimate's accuracy is then assessed in the light of the particular weather conditions that served for data generation. The originality also lies in the use of stochastically generated weather datasets to perform an uncertaintyand global sensitivity analysis of all estimates with respect to 6 weather variables.The methodology is applied on simulated data from a one-storey house case study serving as reference model. The thermal resistance estimations are inferred from calibrated stochastic RC models. It is found that 11 days are necessary to achieve robust estimations. The large air change rate in the case study explains why the outdoor temperature and the wind speed are found highly influential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源