论文标题
蛋白质模型质量评估使用旋转等级的分层神经网络
Protein model quality assessment using rotation-equivariant, hierarchical neural networks
论文作者
论文摘要
蛋白质是微型机器,其功能取决于其三维(3D)结构。在计算上确定这种结构仍然是一个未解决的巨大挑战。一个主要的瓶颈涉及在大量候选人中选择最准确的结构模型,这是模型质量评估中解决的任务。在这里,我们提出了一种新颖的深度学习方法来评估蛋白质模型的质量。我们的网络建立在不同级别的结构分辨率下的原子结构和旋转等值卷积的基于点的表示。这些联合方面使网络可以从整个蛋白质结构中端到端学习。我们的方法实现了最新的方法,从而使蛋白质模型得分为最近一轮CASP,这是一个盲目的预测社区实验。特别令人惊讶的是,我们的方法不使用物理启发的能量术语,并且不依赖其他信息的可用性(除了单个蛋白质模型的原子结构之外),例如多种蛋白质的序列比对。
Proteins are miniature machines whose function depends on their three-dimensional (3D) structure. Determining this structure computationally remains an unsolved grand challenge. A major bottleneck involves selecting the most accurate structural model among a large pool of candidates, a task addressed in model quality assessment. Here, we present a novel deep learning approach to assess the quality of a protein model. Our network builds on a point-based representation of the atomic structure and rotation-equivariant convolutions at different levels of structural resolution. These combined aspects allow the network to learn end-to-end from entire protein structures. Our method achieves state-of-the-art results in scoring protein models submitted to recent rounds of CASP, a blind prediction community experiment. Particularly striking is that our method does not use physics-inspired energy terms and does not rely on the availability of additional information (beyond the atomic structure of the individual protein model), such as sequence alignments of multiple proteins.