论文标题
学位的地图,相对LS类别和较高的拓扑复杂性
Maps of degree one, relative LS category and higher topological complexities
论文作者
论文摘要
在本文中,我们介绍了地图的相对LS类别,并研究了其某些属性。然后,我们引入地图的“高拓扑复杂性”,即同型不变。我们给出了一个共同的下限,并将其与图MAP的先前已知的“拓扑复杂性”进行了比较。此外,我们研究了两个由一张地图连接的封闭式歧管的Lusternik-Schnirelmann类别与拓扑复杂性之间的关系。
In this paper, we introduce relative LS category of a map and study some of its properties. Then we introduce `higher topological complexity' of a map, a homotopy invariant. We give a cohomological lower bound and compare it with previously known `topological complexity' of a map. Moreover, we study the relation between Lusternik-Schnirelmann category and topological complexity of two closed oriented manifolds connected by a degree one map.