论文标题
通过深度加强学习,有效的信息扩散在随着时变图中
Efficient Information Diffusion in Time-Varying Graphs through Deep Reinforcement Learning
论文作者
论文摘要
通过许多真实的应用程序,网络播种以进行有效的信息扩散跨时变图(TVG)是一项艰巨的任务。有几种方法可以建模这种时空影响最大化问题,但最终目标是确定节点开始扩散过程的最佳时刻。在这种情况下,我们提出了时空影响最大化〜(STIM),该模型是通过增强学习和图形嵌入一组人工TVG上的模型,能够学习每个节点的时间行为和连通性模式,从而可以预测最佳的力矩,从而启动通过电视的扩散。我们还开发了一套特殊的人工TVG,用于训练,以模拟TVG中的随机扩散过程,这表明STIM网络即使在非确定性环境中也可以学习有效的政策。还使用现实世界中的TVG评估了刺激,它还可以通过节点有效地传播信息。最后,我们还表明,刺激模型的时间复杂性为$ O(| e |)$。因此,STIM提出了一种新颖的方法,可以通过简单地更改采用的奖励功能来改变电视中的有效信息扩散,在这种方法中,可以改变模型的目标。
Network seeding for efficient information diffusion over time-varying graphs~(TVGs) is a challenging task with many real-world applications. There are several ways to model this spatio-temporal influence maximization problem, but the ultimate goal is to determine the best moment for a node to start the diffusion process. In this context, we propose Spatio-Temporal Influence Maximization~(STIM), a model trained with Reinforcement Learning and Graph Embedding over a set of artificial TVGs that is capable of learning the temporal behavior and connectivity pattern of each node, allowing it to predict the best moment to start a diffusion through the TVG. We also develop a special set of artificial TVGs used for training that simulate a stochastic diffusion process in TVGs, showing that the STIM network can learn an efficient policy even over a non-deterministic environment. STIM is also evaluated with a real-world TVG, where it also manages to efficiently propagate information through the nodes. Finally, we also show that the STIM model has a time complexity of $O(|E|)$. STIM, therefore, presents a novel approach for efficient information diffusion in TVGs, being highly versatile, where one can change the goal of the model by simply changing the adopted reward function.