论文标题

由于单金属层和金属/抗铁磁铁双层的电脉冲引起的非魔法耐药性变化的系统研究

Systematic study of nonmagnetic resistance changes due to electrical pulsing in single metal layers and metal/antiferromagnet bilayers

论文作者

Jacot, B. J., Krishnaswamy, G., Sala, G., Avci, C. O., Vélez, S., Gambardella, P., Lambert, C. -H.

论文摘要

通常需要强烈的电流脉冲来操作微电子和自旋装置。值得注意的是,强烈的电流脉冲已被证明会诱导抗铁磁铁/重金属双层和非中心对称抗fiferromagnets的域重新定位所诱导的磁化变化。在这种情况下,非磁性电阻率的变化可能会在抗铁磁切换的标志上占主导地位。我们报告了沉积在绝缘基板上的PT和PT/NIO层的电流引起的横向和纵向电阻变化的系统测量值,即SI/SIO $ _2 $,SI/SI $ _3 $ _3 $ _3 $ n $ n $ _4 $,以及Al $ _2 $ _3 $ _3 $。我们确定可以使用的脉冲振幅和长度的范围,而不会影响电阻,并表明它随着底物的设备尺寸和热扩散率而增加。在PT和NIO/PT设备的电阻反应中未观察到显着差异,因此排除了NIO抗铁磁域切换的证据。横向电阻的变化与PT中的热激活过程有关,该过程遵循双指数定律的衰减,特征性的时间尺度为几分钟至小时。我们使用惠斯通桥模型来区分积极和负电阻的变化,突出竞争退火和电气移民效应。根据设备的训练,横向电阻可以在电流脉冲之间增加或减小。此外,我们阐明了非单调电阻基线的起源,我们将其归因于训练效应与电流的不对称分布相结合。这些结果提供了有关金属层的电流抗电阻变化的起源的洞察力,以及在抗fiferromagnets的切换实验中最小化非磁性伪影的指南。

Intense current pulses are often required to operate microelectronic and spintronic devices. Notably, strong current pulses have been shown to induce magnetoresistance changes attributed to domain reorientation in antiferromagnet/heavy metal bilayers and non-centrosymmetric antiferromagnets. In such cases, nonmagnetic resistivity changes may dominate over signatures of antiferromagnetic switching. We report systematic measurements of the current-induced changes of the transverse and longitudinal resistance of Pt and Pt/NiO layers deposited on insulating substrates, namely Si/SiO$_2$, Si/Si$_3$N$_4$, and Al$_2$O$_3$. We identify the range of pulse amplitude and length that can be used without affecting the resistance and show that it increases with the device size and thermal diffusivity of the substrate. No significant difference is observed in the resistive response of Pt and NiO/Pt devices, thus precluding evidence on the switching of antiferromagnetic domains in NiO. The variation of the transverse resistance is associated to a thermally-activated process in Pt that decays following a double exponential law with characteristic timescales of a few minutes to hours. We use a Wheatstone bridge model to discriminate between positive and negative resistance changes, highlighting competing annealing and electromigration effects. Depending on the training of the devices, the transverse resistance can either increase or decrease between current pulses. Further, we elucidate the origin of the nonmonotonic resistance baseline, which we attribute to training effects combined with the asymmetric distribution of the current. These results provide insight into the origin of current-induced resistance changes in metal layers and a guide to minimize nonmagnetic artifacts in switching experiments of antiferromagnets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源