论文标题

在包括表面应力在内的大菌株中断裂的相位场理论

Phase field theory for fracture at large strains including surface stresses

论文作者

Jafarzadeh, Hossein, Farrahi, Gholam Hossein, Levitas, Valery I., Javanbakht, Mahdi

论文摘要

裂缝的相位场理论是在大型菌株中开发的,重点是正确引入表面应力。这是通过将内聚力和梯度能量乘以变形和未变形构型中裂纹表面积的局部比,并根据参考配置中的顺序参数梯度的梯度能量的局部比。这会导致表面应力的表达,这与尖锐的表面接近一致。也就是说,考奇表面应力的结构部分代表各向同性双轴张力,其每单位长度的力量等于表面能。表面应力是几何非线性的结果,即使菌株是无限的。他们在变形和未变形的配置中为金茨堡 - 兰道方程做出了多种贡献,以造成损害演变。材料参数之间的重要连接是使用两个分离表面的分析溶液获得的,以及分析应力 - 应变曲线的均质张力,以进行不同的降解和插值函数。在未变形和变形的配置中显示了一个完整的方程系统。使用现有的第一个原理模拟在[100]和[111]方向上的单轴张力,以获得所有相位场参数。

Phase field theory for fracture is developed at large strains with an emphasis on a correct introduction of surface stresses. This is achieved by multiplying the cohesion and gradient energies by the local ratio of the crack surface areas in the deformed and undeformed configurations and with the gradient energy in terms of the gradient of the order parameter in the reference configuration. This results in an expression for the surface stresses which is consistent with the sharp surface approach. Namely, the structural part of the Cauchy surface stress represents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the surface energy. The surface stresses are a result of the geometric nonlinearities, even when strains are infinitesimal. They make multiple contributions to the Ginzburg-Landau equation for damage evolution, both in the deformed and undeformed configurations. Important connections between material parameters are obtained using an analytical solution for two separating surfaces, as well as an analysis of the stress-strain curves for homogeneous tension for different degradation and interpolation functions. A complete system of equations is presented in the undeformed and deformed configurations. All the phase field parameters are obtained utilizing the existing first principle simulations for the uniaxial tension of Si crystal in the [100] and [111] directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源