论文标题

蛋白质结构通过莫替莫斯分布的参数化

Protein Structure Parameterization via Mobius Distributions on the Torus

论文作者

Arashi, Mohammad, Rad, Najmeh Nakhaei, Bekker, Andriette, Schubert, Wolf Dieter

论文摘要

蛋白质构成了一大批大分子,具有许多生物体的功能。蛋白质通过在一个或多个多肽中采用由其组成氨基酸的序列编码的不同的三维结构来实现这一目标。在本文中,考虑了蛋白质主链扭转角的统计模型。通过将Möbius转换应用于双变量von Mises分布,提出了两个新的分布。还开发了拟议模型的正弦链版本外的边际和条件分布。分析了包含有关蛋白质结构域的双变量信息的三个大数据集,以说明柔性模型的强度。最后,进行了一项模拟研究,以评估获得的最大似然估计值,并找到从提出模型中生成样品的最佳方法,以用作马尔可夫链蒙特卡洛·卡洛(Monte Carlo Carlo)抽样方法中的提议分布,以预测蛋白质的3D结构。

Proteins constitute a large group of macromolecules with a multitude of functions for all living organisms. Proteins achieve this by adopting distinct three-dimensional structures encoded by the sequence of their constituent amino acids in one or more polypeptides. In this paper, the statistical modelling of the protein backbone torsion angles is considered. Two new distributions are proposed for toroidal data by applying the Möbius transformation to the bivariate von Mises distribution. Marginal and conditional distributions in addition to sine-skewed versions of the proposed models are also developed. Three big data sets consisting of bivariate information about protein domains are analysed to illustrate the strength of the flexible proposed models. Finally, a simulation study is done to evaluate the obtained maximum likelihood estimates and also to find the best method of generating samples from the proposed models to use as the proposal distributions in the Markov Chain Monte Carlo sampling method for predicting the 3D structure of proteins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源