论文标题
玻璃状碳微电极阵列可使用快速扫描循环伏安法实现电压峰分离的同时检测多巴胺和5-羟色胺
Glassy Carbon Microelectrode Arrays Enable Voltage-Peak Separated Simultaneous Detection of Dopamine and Serotonin Using Fast Scan Cyclic Voltammetry
论文作者
论文摘要
实时进展,同时对多个神经递质的体内检测将有助于加速神经科学研究的进展。因此,需要开发能够稳定的电化学检测能够以高灵敏度和选择性以及后时间分辨率的稳定电化学检测的探针的需求。此外,需要较高的空间分辨率多通道能力来捕获不同大脑区域的复杂神经传递动力学。这些研究的需求激发了通过碳MEMS(C-MEMS)微加工过程在柔性聚合物底物上引入玻璃碳(GC)微电极阵列,然后是一种新型的模式转移技术。这些可植入的GC微电极通过存在活性羧基,羰基和羟基官能团在电化学检测中具有独特的优势。此外,它们还提供快速的电子传输动力学,电容性电化学行为和广泛的电化学窗口。在这里,我们将这些GC微电极的使用与快速扫描循环伏安法(FSCV)技术相结合,以优化多巴胺和血清素在体外和体内的共探测。我们证明,使用优化的FSCV三角波形以低于700 v/s的扫描速率,并分别以0.4和1V的电势保持和切换,可以区分血清素和多巴胺的氧化峰,以及羟色胺的氧化峰,以及羟色胺的氧化峰。综上所述,我们的结果为富含活性官能团的碳基MEA平台提供了令人信服的案例,该平台可重复且稳定地检测到浓度低至10 nm的电活性多重神经递质
Progress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid neurotransmitter fluctuations with high sensitivity and selectivity and sub-second temporal resolution has, therefore, become compelling. Additionally, a higher spatial resolution multi-channel capability is required to capture the complex neurotransmission dynamics across different brain regions. These research needs have inspired the introduction of glassy carbon (GC) microelectrode arrays on flexible polymer substrates through carbon MEMS (C-MEMS) microfabrication process followed by a novel pattern transfer technique. These implantable GC microelectrodes offer unique advantages in electrochemical detection of electroactive neurotransmitters through the presence of active carboxyl, carbonyl, and hydroxyl functional groups. In addition, they offer fast electron transfer kinetics, capacitive electrochemical behavior, and wide electrochemical window. Here, we combine the use of these GC microelectrodes with the fast scan cyclic voltammetry (FSCV) technique to optimize the co-detection of dopamine and serotonin in vitro and in vivo. We demonstrate that using optimized FSCV triangular waveform at scan rates lower than 700 V/s and holding and switching at potentials of 0.4 and 1V respectively, it is possible to discriminate voltage reduction and oxidation peaks of serotonin and dopamine, with serotonin contributing distinct multiple oxidation peaks. Taken together, our results present a compelling case for a carbon-based MEA platform rich with active functional groups that allows for repeatable and stable detection of electroactive multiple neurotransmitters at concentrations as low as 10 nM