论文标题

遗憾 - 最佳的测量反馈控制

Regret-optimal measurement-feedback control

论文作者

Goel, Gautam, Hassibi, Babak

论文摘要

我们从遗憾最小化的角度考虑线性动力学系统中的测量反馈控制。与该领域的大多数先前工作不同,我们专注于设计在线控制器的问题,该问题与事后选择的最佳动态控制动作序列竞争,而不是某些特定类别的控制器中最佳控制器。当环境随时间变化而没有单个控制器在整个时间范围内都能达到良好的性能时,这种遗憾的表述很有吸引力。我们表明,在测量反馈设置中,与完整信息设置不同,没有单个离线控制器在每个干扰上都胜过所有其他离线控制器,并提出了一个新的$ H_2 $ - 优势离线控制器,作为在线控制器竞争的基准。我们表明,可以通过稳健控制中的经典尼哈里问题将相应的遗憾在线控制器找到,并呈现出紧密的数据依赖性限制。

We consider measurement-feedback control in linear dynamical systems from the perspective of regret minimization. Unlike most prior work in this area, we focus on the problem of designing an online controller which competes with the optimal dynamic sequence of control actions selected in hindsight, instead of the best controller in some specific class of controllers. This formulation of regret is attractive when the environment changes over time and no single controller achieves good performance over the entire time horizon. We show that in the measurement-feedback setting, unlike in the full-information setting, there is no single offline controller which outperforms every other offline controller on every disturbance, and propose a new $H_2$-optimal offline controller as a benchmark for the online controller to compete against. We show that the corresponding regret-optimal online controller can be found via a novel reduction to the classical Nehari problem from robust control and present a tight data-dependent bound on its regret.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源