论文标题

MRI上无监督的大脑异常检测的简单统计方法与深度学习方法有竞争力

Simple statistical methods for unsupervised brain anomaly detection on MRI are competitive to deep learning methods

论文作者

Saase, Victor, Wenz, Holger, Ganslandt, Thomas, Groden, Christoph, Maros, Máté E.

论文摘要

磁共振成像(MRI)的统计分析可以帮助放射学家检测原本可能遗漏的病理学。深度学习(DL)在对大脑异常检测的复杂空间数据进行建模方面表明了希望。但是,DL模型具有主要的缺陷:它们需要大量的高质量培训数据,难以设计和训练,并且对扫描协议和硬件的细微变化很敏感。在这里,我们表明,在无用的病理检测中,使用空间模式的简单统计方法(例如基线和协方差)模型以及使用空间模式的线性投影方法也可以实现DL等效性(3D卷积自动化)性能。所有方法均经过训练(n = 395),并在新型专家策划的多参数(8个序列)头部MRI数据集上进行了比较(n = 44)。我们表明,这些简单的方法可以更准确地检测小病变,并且更容易训练和理解。使用AUC和平均精度进行定量比较这些方法,并在包括脑萎缩,肿瘤(小转移)和运动伪像的临床用例上进行定性评估。我们的结果表明,尽管DL方法可能很有用,但它们应该对更简单的方法表现出足够大的性能提高,以证明其使用情况是合理的。因此,简单的统计方法应为基准提供基线。源代码和训练有素的模型可在GitHub(https://github.com/vsaase/simplebad)上找到。

Statistical analysis of magnetic resonance imaging (MRI) can help radiologists to detect pathologies that are otherwise likely to be missed. Deep learning (DL) has shown promise in modeling complex spatial data for brain anomaly detection. However, DL models have major deficiencies: they need large amounts of high-quality training data, are difficult to design and train and are sensitive to subtle changes in scanning protocols and hardware. Here, we show that also simple statistical methods such as voxel-wise (baseline and covariance) models and a linear projection method using spatial patterns can achieve DL-equivalent (3D convolutional autoencoder) performance in unsupervised pathology detection. All methods were trained (N=395) and compared (N=44) on a novel, expert-curated multiparametric (8 sequences) head MRI dataset of healthy and pathological cases, respectively. We show that these simple methods can be more accurate in detecting small lesions and are considerably easier to train and comprehend. The methods were quantitatively compared using AUC and average precision and evaluated qualitatively on clinical use cases comprising brain atrophy, tumors (small metastases) and movement artefacts. Our results demonstrate that while DL methods may be useful, they should show a sufficiently large performance improvement over simpler methods to justify their usage. Thus, simple statistical methods should provide the baseline for benchmarks. Source code and trained models are available on GitHub (https://github.com/vsaase/simpleBAD).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源