论文标题
安全的深层概率动态热线评级预测
A Secure Deep Probabilistic Dynamic Thermal Line Rating Prediction
论文作者
论文摘要
准确的间接线路线(OHL)传输的短期预测会直接影响电源系统操作和计划的效率。动态热线额定值(DTLR)的任何高估都可以导致OHL,安全危害等的终身降解和失败。本文提出了针对DTLR的小时预测的安全但尖锐的概率预测模型。所提出的DTLR的安全性限制了DTLR预测的频率超过实际DTLR。该模型基于增强的深度学习体系结构,该体系结构利用了广泛的预测因子,包括历史气候数据和DTLR计算过程中获得的潜在变量。此外,通过引入自定义的成本函数,对深神经网络进行了训练,可以根据所需的超出概率来考虑DTLR安全性,同时最大程度地减少预测的DTLR与实际值的偏差。使用记录的实验数据开发并验证了提出的概率DTLR。与最新的评估指标相比,模拟结果验证了所提出的DTLR的优势。
Accurate short-term prediction of overhead line (OHL) transmission ampacity can directly affect the efficiency of power system operation and planning. Any overestimation of the dynamic thermal line rating (DTLR) can lead to lifetime degradation and failure of OHLs, safety hazards, etc. This paper presents a secure yet sharp probabilistic prediction model for the hour-ahead forecasting of the DTLR. The security of the proposed DTLR limits the frequency of DTLR prediction exceeding the actual DTLR. The model is based on an augmented deep learning architecture that makes use of a wide range of predictors, including historical climatology data and latent variables obtained during DTLR calculation. Furthermore, by introducing a customized cost function, the deep neural network is trained to consider the DTLR security based on the required probability of exceedance while minimizing deviations of the predicted DTLRs from the actual values. The proposed probabilistic DTLR is developed and verified using recorded experimental data. The simulation results validate the superiority of the proposed DTLR compared to state-of-the-art prediction models using well-known evaluation metrics.