论文标题

量化计算病理中图神经网络的解释器

Quantifying Explainers of Graph Neural Networks in Computational Pathology

论文作者

Jaume, Guillaume, Pati, Pushpak, Bozorgtabar, Behzad, Foncubierta-Rodríguez, Antonio, Feroce, Florinda, Anniciello, Anna Maria, Rau, Tilman, Thiran, Jean-Philippe, Gabrani, Maria, Goksel, Orcun

论文摘要

深度学习方法的解释性必须促进其在数字病理学中的临床采用。但是,基于像素的处理方法的流行深度学习方法和解释性技术(解释器)无视生物实体的概念,从而使病理学家的理解变得复杂。在这项工作中,我们通过采用基于生物实体的图形处理和图形解释器来解决这一问题,从而使病理学家可以使用解释。在这种情况下,一个重大挑战是要辨别有意义的解释者,特别是以标准化和可量化的方式。为此,我们在本文中提出了一组新型的定量指标,该指标基于类别可分离性的统计数据,使用可测量的概念来表征图形解释器。我们采用拟议的指标来评估三种类型的图形解释器,即层面相关性的传播,基于梯度的显着性和图形修剪方法,以解释用于乳腺癌亚型的细胞图表。所提出的指标也适用于其他域,使用特定于域的直观概念。我们通过专家病理学家验证了BRACS数据集的定性和定量发现,这是一大批乳腺癌ROI。

Explainability of deep learning methods is imperative to facilitate their clinical adoption in digital pathology. However, popular deep learning methods and explainability techniques (explainers) based on pixel-wise processing disregard biological entities' notion, thus complicating comprehension by pathologists. In this work, we address this by adopting biological entity-based graph processing and graph explainers enabling explanations accessible to pathologists. In this context, a major challenge becomes to discern meaningful explainers, particularly in a standardized and quantifiable fashion. To this end, we propose herein a set of novel quantitative metrics based on statistics of class separability using pathologically measurable concepts to characterize graph explainers. We employ the proposed metrics to evaluate three types of graph explainers, namely the layer-wise relevance propagation, gradient-based saliency, and graph pruning approaches, to explain Cell-Graph representations for Breast Cancer Subtyping. The proposed metrics are also applicable in other domains by using domain-specific intuitive concepts. We validate the qualitative and quantitative findings on the BRACS dataset, a large cohort of breast cancer RoIs, by expert pathologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源