论文标题
复杂的分析中间双曲线和有限性能
Complex-analytic intermediate hyperbolicity, and finiteness properties
论文作者
论文摘要
由投影歧管X的自动形态自动(X)的有限性以及Kobayashi-Ochiai的猜想的猜测是,我们应该一般类型(也称为强烈测量的多余)构想,我们应该研究一般的(x)对AUT(x)的质量(x)的质量(x)的质量(X)杂色(x),这是一般性的(x),这是一般性的(x),这是一般的(x)的杂物(x)。我们首先表明,一个复杂的歧管X是(dim(x)-1) - 分析双曲线确实具有有限的自动形态组。然后,我们获得了伪 - (dim(x) - 1) - 分析双曲线,强烈测量双曲线射歧管X的类似陈述,这是关于堕落集合大小的额外假设。证明期间使用的某些属性使我们引入了中间Picard双曲线的概念,我们上次讨论。
Motivated by the finiteness of the set of automorphisms Aut(X) of a projective manifold X, and by Kobayashi-Ochiai's conjecture that a projective manifold dim(X)-analytically hyperbolic (also known as strongly measure hyperbolic) should be of general type, we investigate the finiteness properties of Aut(X) for a complex manifold satisfying a (pseudo-) intermediate hyperbolicity property. We first show that a complex manifold X which is (dim(X) -- 1)-analytically hyperbolic has indeed finite automorphisms group. We then obtain a similar statement for a pseudo-(dim(X) -- 1)-analytically hyperbolic, strongly measure hyperbolic projective manifold X, under an additional hypothesis on the size of the degeneracy set. Some of the properties used during the proofs lead us to introduce a notion of intermediate Picard hyperbolicity, which we last discuss.