论文标题
如何训练神经网络去除耀斑
How to Train Neural Networks for Flare Removal
论文作者
论文摘要
当摄像头指向强光源时,由此产生的照片可能包含镜头耀斑伪像。耀斑以多种模式(光环,条纹,颜色出血,雾霾等)出现,这种外观上的多样性使爆炸的去除挑战。现有的分析解决方案对人工制品的几何形状或亮度做出了强有力的假设,因此只能在一小部分耀斑上工作。机器学习技术已显示出在去除其他类型的工件(例如反射)方面的成功,但由于缺乏训练数据,因此并未广泛应用于耀斑。为了解决这个问题,我们明确地对耀斑的光学原因进行了验证或使用波光学的建模,并生成耀斑腐败和清洁图像的半合成对。这使我们能够训练神经网络首次删除镜头耀斑。实验表明,我们的数据合成方法对于准确的耀斑去除至关重要,并且使用我们的技术训练的模型可以很好地推广到不同场景,照明条件和摄像头的真实晶状体耀斑。
When a camera is pointed at a strong light source, the resulting photograph may contain lens flare artifacts. Flares appear in a wide variety of patterns (halos, streaks, color bleeding, haze, etc.) and this diversity in appearance makes flare removal challenging. Existing analytical solutions make strong assumptions about the artifact's geometry or brightness, and therefore only work well on a small subset of flares. Machine learning techniques have shown success in removing other types of artifacts, like reflections, but have not been widely applied to flare removal due to the lack of training data. To solve this problem, we explicitly model the optical causes of flare either empirically or using wave optics, and generate semi-synthetic pairs of flare-corrupted and clean images. This enables us to train neural networks to remove lens flare for the first time. Experiments show our data synthesis approach is critical for accurate flare removal, and that models trained with our technique generalize well to real lens flares across different scenes, lighting conditions, and cameras.