论文标题

Orgmining 2.0:事件日志的组织模型挖掘的新型框架

OrgMining 2.0: A Novel Framework for Organizational Model Mining from Event Logs

论文作者

Yang, Jing, Ouyang, Chun, van der Aalst, Wil M. P., ter Hofstede, Arthur H. M., Yu, Yang

论文摘要

围绕人力资源提供适当的结构可以简化运营,从而促进组织的竞争力。为了实现这一目标,现代组织需要在面对不断变化的环境的同时,准确,及时了解人力资源组。流程挖掘的使用提供了一种有希望的方法,可以通过利用存储在信息系统中的事件日志数据来帮助满足需求。通过提取有关参与事件日志参与业务流程的实际行为的知识,可以构建组织模型,从而有助于分析与过程执行相关的人力资源的事实分组。然而,在应用最新过程挖掘以分析资源分组时,仍有开放的研究差距尚待解决。首先,组织模型的发现仅与过程执行的背景有限。另一方面,尚未提出一种严格的解决方案,该解决方案对事件日志数据进行评估。在本文中,我们旨在通过建立一个基于对组织模型的更丰富定义与流程执行知识耦合资源分组的新颖框架来应对这些研究挑战。通过介绍组织模型的一致性检查概念,该框架可以有效地评估组织模型,因此为基于事件日志分析和改进资源分组提供了基础。我们通过提出一种由组织模型发现框架所基于的方法来证明此框架的可行性,并在现实生活事件日志上进行实验以发现和评估组织模型。

Providing appropriate structures around human resources can streamline operations and thus facilitate the competitiveness of an organization. To achieve this goal, modern organizations need to acquire an accurate and timely understanding of human resource grouping while faced with an ever-changing environment. The use of process mining offers a promising way to help address the need through utilizing event log data stored in information systems. By extracting knowledge about the actual behavior of resources participating in business processes from event logs, organizational models can be constructed, which facilitate the analysis of the de facto grouping of human resources relevant to process execution. Nevertheless, open research gaps remain to be addressed when applying the state-of-the-art process mining to analyze resource grouping. For one, the discovery of organizational models has only limited connections with the context of process execution. For another, a rigorous solution that evaluates organizational models against event log data is yet to be proposed. In this paper, we aim to tackle these research challenges by developing a novel framework built upon a richer definition of organizational models coupling resource grouping with process execution knowledge. By introducing notions of conformance checking for organizational models, the framework allows effective evaluation of organizational models, and therefore provides a foundation for analyzing and improving resource grouping based on event logs. We demonstrate the feasibility of this framework by proposing an approach underpinned by the framework for organizational model discovery, and also conduct experiments on real-life event logs to discover and evaluate organizational models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源