论文标题

根据有限组的消失元素的顺序

On the orders of vanishing elements of finite groups

论文作者

Madanha, Sesuai Y.

论文摘要

令$ g $为有限的组,$ p $为素数。令$ \ mathrm {vo}(g)$表示消失元素的顺序集,$ \ mathrm {vo} _ {p}(g)$是$ \ mathrm {vo}(vo}(g)的子集$ \ mathrm {vo}(g)的$由这些消失元素的顺序组成,不可除以$ p $。 Dolfi,Pacifi,Sanus和Spiga证明,如果$ a $不是$ p $ - \ in \ mathrm {vo}(g)$的所有$ a \,则$ g $具有普通的Sylow $ P $ -Subgroup。在另一篇文章中,同一位作者还表明,如果如果$ \ mathrm {vo} _ {p'}(g)= \ emptyset $,则$ g $具有正常的nilpotent $ p $ - complement。这些结果是众所周知的ITO-Michler和Thompson定理的变化。在本文中,我们研究可解决的组,以便$ | \ m atrm {vo} _ {p}(g)| = 1 $,并表明$ p'$是亚正常。这类似于以撒,莫雷托,纳瓦罗和Tiep的工作,他们认为只有一个字符学位的小组可除以$ p $。我们还研究某些有限群$ g $,以便$ | \ m atrm {vo} _ {p'}(g)| = 1 $,我们证明$ g $具有普通的亚组$ l $,因此$ g/l $ a普通$ p $ - $ p $ - $ l $具有正常的$ p $ complent。这类似于Giannelli,Rizo和Schaeffer Fry最近在角色学位上的作品,并获得了几个$ p'$ - 角色学位。 Bubboloni,Dolfi和Spiga研究了有限组,因此对于某些整数$ M \ GEQSLANT 1 $,每个消失的元素都是订单$ p^{m} $。作为概括,我们调查了一个组,以使某些整数$ m \ geqslant 0 $,$ \ gcd(a,b)= p^{m} $,对于所有$ a,b \ in \ mathrm {vo}(g)$。我们还研究了可解决的有限群体,其不可约束的字符仅在主要功率秩序的要素上消失。

Let $ G$ be a finite group and $p$ be a prime. Let $ \mathrm{Vo}(G) $ denote the set of the orders of vanishing elements, $\mathrm{Vo}_{p} (G)$ be the subset of $ \mathrm{Vo}(G) $ consisting of those orders of vanishing elements divisible by $p$ and $\mathrm{Vo}_{p'} (G) $ be the subset of $ \mathrm{Vo}(G) $ consisting of those orders of vanishing elements not divisible by $p$. Dolfi, Pacifi, Sanus and Spiga proved that if $ a $ is not a $ p $-power for all $ a\in \mathrm{Vo}(G)$, then $ G $ has a normal Sylow $ p $-subgroup. In another article, the same authors also show that if if $ \mathrm{Vo}_{p'}(G) =\emptyset $, then $ G $ has a normal nilpotent $ p $-complement. These results are variations of the well known Ito-Michler and Thompson theorems. In this article we study solvable groups such that $|\mathrm{Vo}_{p}(G)| = 1 $ and show that $ P' $ is subnormal. This is analogous to the work of Isaacs, Moréto, Navarro and Tiep where they considered groups with just one character degree divisible by $ p $. We also study certain finite groups $G$ such that $|\mathrm{Vo}_{p'}(G)| = 1 $ and we prove that $ G $ has a normal subgroup $ L $ such that $ G/L $ a normal $ p $-complement and $ L $ has a normal $ p $-complement. This is analogous to the recent work of Giannelli, Rizo and Schaeffer Fry on character degrees with a few $p'$-character degrees. Bubboloni, Dolfi and Spiga studied finite groups such that every vanishing element is of order $ p^{m} $ for some integer $ m\geqslant 1 $. As a generalization, we investigate groups such that $ \gcd(a,b)=p^{m} $ for some integer $ m \geqslant 0 $, for all $ a,b\in \mathrm{Vo}(G) $. We also study finite solvable groups whose irreducible characters vanish only on elements of prime power order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源