论文标题

从短轨迹中安全地学习动力系统

Safely Learning Dynamical Systems from Short Trajectories

论文作者

Ahmadi, Amir Ali, Chaudhry, Abraar, Sindhwani, Vikas, Tu, Stephen

论文摘要

学习控制未知动态系统的基本挑战是通过在保持安全性的同时进行测量来减少模型不确定性。在这项工作中,我们通过顺序决定在哪里初始化下一个轨迹来制定数学定义,以确定安全地学习动态系统的含义。在我们的框架中,系统的状态必须在所有动态系统的(可能重复)操作下留在给定的安全区域内,这些动态系统与迄今为止收集的信息一致。对于我们的前两个结果,我们考虑安全学习线性动力学的设置。我们提出了一种基于线性编程的算法,该算法要么安全地从长度的轨迹中安全地恢复真正的动态,要么证明不可能安全学习是不可能的。我们还提供了一组初始条件的有效半菲尼特表示,其长度二的轨迹可以保证留在安全区域中。对于我们的最终结果,我们研究了安全学习非线性动力学系统的问题。我们给出了一组初始条件集的基于二阶编程的表示,这些条件保证在系统动力学后保证保留在安全区域中。

A fundamental challenge in learning to control an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of the system is required to stay within a given safety region under the (possibly repeated) action of all dynamical systems that are consistent with the information gathered so far. For our first two results, we consider the setting of safely learning linear dynamics. We present a linear programming-based algorithm that either safely recovers the true dynamics from trajectories of length one, or certifies that safe learning is impossible. We also give an efficient semidefinite representation of the set of initial conditions whose resulting trajectories of length two are guaranteed to stay in the safety region. For our final result, we study the problem of safely learning a nonlinear dynamical system. We give a second-order cone programming based representation of the set of initial conditions that are guaranteed to remain in the safety region after one application of the system dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源