论文标题
非常规$ \ Mathbb {z} _ {n} $ parton状态$ν= 7/3 $:有限宽度的作用
Unconventional $\mathbb{Z}_{n}$ parton states at $ν= 7/3$: The role of finite width
论文作者
论文摘要
最近的作品[Balram,Jain和Barkeshli,Phys。 Rev. Res。 $ {\ bf 2} $,013349(2020)]建议,一个非常规的状态,描述$ \ mathbb {z} _ {z} _ {n} $复合玻色子的超导性,以电荷为$ 1/(3n)$的电子电荷$ n/n/n Systems $ n/n/n Systems $ n/n 3 n/3n $ n $ n n $ n n $ nc.但是,迄今为止的所有实验都与后者一致。为了解决这一差异,我们研究了有限宽度对基态的影响,并预测了从非常规的$ \ mathbb {z} _ {n} $状态的相位过渡到laughlin的宽度,其宽度超过$ \ sim $ \ sim $ 1.5磁性长度。我们还确定了在双层石墨烯中三分之一填充的零道水平中稳定非常规状态的参数区域。还考虑了Landau水平混合和自旋的作用。
A recent work [Balram, Jain, and Barkeshli, Phys. Rev. Res. ${\bf 2}$, 013349 (2020)] has suggested that an unconventional state describing $\mathbb{Z}_{n}$ superconductivity of composite bosons, which supports excitations with charge $1/(3n)$ of the electron charge, is energetically better than the Laughlin wave function at $ν=7/3$ in GaAs systems. All experiments to date, however, are consistent with the latter. To address this discrepancy, we study the effect of finite width on the ground state and predict a phase transition from an unconventional $\mathbb{Z}_{n}$ state at small widths to the Laughlin state for widths exceeding $\sim$ 1.5 magnetic lengths. We also determine the parameter region where an unconventional state is stabilized in the one third filled zeroth Landau level in bilayer graphene. The roles of Landau level mixing and spin are also considered.