论文标题

Xfraud:可解释的欺诈交易检测

xFraud: Explainable Fraud Transaction Detection

论文作者

Rao, Susie Xi, Zhang, Shuai, Han, Zhichao, Zhang, Zitao, Min, Wei, Chen, Zhiyao, Shan, Yinan, Zhao, Yang, Zhang, Ce

论文摘要

在在线零售平台上,至关重要的是要积极检测交易的风险,以改善客户体验并最大程度地减少财务损失。在这项工作中,我们提出了Xfraud,这是一个可解释的欺诈交易预测框架,主要由检测器和解释器组成。 Xfraud检测器可以有效,有效地预测传入交易的合法性。具体而言,它利用异构图神经网络从交易日志中的信息性异质键入实体中学习表达性表示。 Xfraud中的解释器可以从图表中产生有意义的人为理解的解释,以促进业务部门的进一步流程。在我们对Xfraud的实验中,在具有多达11亿节点和37亿个边缘的真实交易网络上,Xfraud能够在许多评估指标中胜过各种基线模型,同时在分布式设置中保持可扩展。此外,我们表明Xfraud解释器可以产生合理的解释,以通过定量和定性评估可以显着协助业务分析。

At online retail platforms, it is crucial to actively detect the risks of transactions to improve customer experience and minimize financial loss. In this work, we propose xFraud, an explainable fraud transaction prediction framework which is mainly composed of a detector and an explainer. The xFraud detector can effectively and efficiently predict the legitimacy of incoming transactions. Specifically, it utilizes a heterogeneous graph neural network to learn expressive representations from the informative heterogeneously typed entities in the transaction logs. The explainer in xFraud can generate meaningful and human-understandable explanations from graphs to facilitate further processes in the business unit. In our experiments with xFraud on real transaction networks with up to 1.1 billion nodes and 3.7 billion edges, xFraud is able to outperform various baseline models in many evaluation metrics while remaining scalable in distributed settings. In addition, we show that xFraud explainer can generate reasonable explanations to significantly assist the business analysis via both quantitative and qualitative evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源