论文标题
Seyfert 2 Agns IV的化学丰度。通过光电离 +冲击计算的复合模型
Chemical abundances of Seyfert 2 AGNs IV. Composite models calculated by photoionization + shocks
论文作者
论文摘要
我们基于SUMA代码来构建详细的光离子化和冲击电离的复合模型,以重现从Seyfert 2 Nuclei的狭窄线区域(NLR)发出的发射线。这项工作的目的是根据电击参数研究图AGN位置,对气体温度和电离结构的冲击影响,并根据发射线比对冲击的存在敏感的比率得出半经验丰度校准。这些模型用于复制244个局部(z <0.4)Seyfert 2s的光学(3000 <a <7000)发射线强度,其观察数据是从Sloan Digital Sky Survey DR7中选择的。我们的模型表明,Seyfert 2核中的冲击的速度在50-300 km/s的范围内,这意味着比使用纯光电离模型得出的金属度范围(0.6 <(z/z)<1.6)。我们的结果表明,基于集成光谱的标准光线比图无法估算AGN中的冲击速度。我们的模型预测了整个NLR云的温度结构不同,而O+/O和O2+/O的分数丰度与纯光电离模型(主要是冲击为主的对象)相比。这表明,为了最大程度地减少电击效应,具有相似中间电离电位的离子发射的发射线的组合可能是良好的金属性指标。最后,我们在N/O丰度比与N2O2 = log([N II] 6584/[O II] 3727)和N2 = log([n ii] 6584/Hα)索引之间得出了两个校准,这些校准与从纯照相模型中得出的索引。
We build detailed composite models of photoionization and shock ionization based on the SUMA code to reproduce emission lines emitted from the Narrow Line Regions (NLR) of Seyfert 2 nuclei. The aim of this work is to investigate diagram AGN positions according to shock parameters, shock effects on the gas temperature and ionization structures and derive a semi-empirical abundance calibration based on emission-line ratios little sensitive to the shock presence. The models were used to reproduce optical (3000 < A < 7000) emission line intensities of 244 local (z < 0.4) Seyfert 2s, whose observational data were selected from Sloan Digital Sky Survey DR7. Our models suggest that shocks in Seyfert 2 nuclei have velocities in the range of 50-300 km/s and imply a narrower metallicity range (0.6 < (Z/Z) < 1.6) than those derived using pure photoionization models. Our results indicate that shock velocity in AGNs can not be estimated using standard optical line ratio diagrams, based on integrated spectra. Our models predict a different temperature structure and O+/O and O2+/O fractional abundances throughout the NLR clouds than those derived from pure photoionization models, mainly in shock-dominated objects. This suggests that, in order to minimize the shock effects, the combination of emission-lines emitted by ions with similar intermediate ionization potential could be good metallicity indicators. Finally, we derive two calibrations between the N/O abundance ratio and the N2O2=log([N II]6584/[O II]3727) and N2=log([N II]6584/Hα) indexes which agree with that derived from pure photoionization models.