论文标题

时空Pod-galerkin用于参数流控制的方法

Space-time POD-Galerkin approach for parametric flow control

论文作者

Ballarin, Francesco, Rozza, Gianluigi, Strazzullo, Maria

论文摘要

在此贡献中,我们提出了减少订单方法,以快速且可靠地解决受时间依赖的非线性偏微分方程控制的参数化最佳控制问题。我们的目标是提供一种工具来处理多个非线性最优系统在多种传播环境中的时间演变,在这种情况下,必须为各种物理和几何特征分析系统。可以使用最佳控制来填补收集的数据和数学模型之间的差距,并且通常与非常耗时的活动有关:反问题,统计信息等。标准离散技术可能会导致对真实应用程序的难以忍受的模拟。我们旨在展示减少订单建模如何解决此问题。我们依靠一个时空Pod-galerkin降低,以便在低维缩小空间中以快速的方式解决最佳控制问题,以便几个参数实例。所提出的算法通过基于环境科学的数值测试验证:减少的最佳控制问题,由粘性浅水方程不仅在物理特征中,而且在几何学方面都参数为参数。我们将展示还原模型如何有用,以便相对于标准模拟更快地恢复所需的速度和高度轮廓,而不是丢失精度。

In this contribution we propose reduced order methods to fast and reliably solve parametrized optimal control problems governed by time dependent nonlinear partial differential equations. Our goal is to provide a tool to deal with the time evolution of several nonlinear optimality systems in many-query context, where a system must be analysed for various physical and geometrical features. Optimal control can be used in order to fill the gap between collected data and mathematical model and it is usually related to very time consuming activities: inverse problems, statistics, etc. Standard discretization techniques may lead to unbearable simulations for real applications. We aim at showing how reduced order modelling can solve this issue. We rely on a space-time POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space in a fast way for several parametric instances. The proposed algorithm is validated with a numerical test based on environmental sciences: a reduced optimal control problem governed by viscous Shallow Waters Equations parametrized not only in the physics features, but also in the geometrical ones. We will show how the reduced model can be useful in order to recover desired velocity and height profiles more rapidly with respect to the standard simulation, not losing accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源