论文标题
Si的量子效率和衍射图像:AS IBC Mid-IR检测器阵列的5 $ - $ 10 $μ$ m:对JWST/MIRI检测器的影响
The quantum efficiency and diffractive image artifacts of Si:As IBC mid-IR detector arrays at 5 $-$ 10 $μ$m: Implications for the JWST/MIRI detectors
论文作者
论文摘要
砷掺杂的背部照明的阻塞杂质带(Bibib)硅探测器已在三十多年中靠近和中期天文学发展。它们具有高量子效率(QE),尤其是在超过10 $ $ m的波长下,光谱范围很大。它们的辐射硬度也是基于太空仪器的资产。 SI的三个示例:由于Bibib阵列在James Webb太空望远镜(JWST)的中红外仪器(MIRI)中使用,观察到5至28 $μ$ m。在本文中,我们分析了导致高量子效率(最高$ \ sim $ 60 \%)的参数。我们还对5.7和7.8 $ $ m spitzer/irac图像首次注意到的交叉形伪影进行了建模,此后还以较短的波长($ \ le \ le 10〜μ $ M)进行了Miri探测器的实验室测试。伪影是从定义的金属接触到读取器电路的内部反射衍射的结果。较短波长的阵列中的低吸收可以使光子衍射到宽角度,以多次跨探测器和底物穿越探测器和底物。这与吸收较差的其他背部照明固态探测器中的类似行为有关,例如在1 $ $ $ $ m的传统CCD上运行的常规CCD。我们研究了伪影的特性及其对探测器结构的依赖性,该概率是各种光子路径的概率的量子 - 电子动力学(QED)模型。对伪影特性的知识对于观察到了Miri LRS和MRS光谱模式尤为重要。
Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 $μ$m, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 $μ$m. In this paper, we analyze the parameters leading to high quantum efficiency (up to $\sim$ 60\%) for the MIRI devices between 5 and 10 $μ$m. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 $μ$m Spitzer/IRAC images and has since also been imaged at shorter wavelength ($\le 10~μ$m) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 $μ$m. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.