论文标题

反事实公平性,有因果关系变异自动编码器

Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder

论文作者

Kim, Hyemi, Shin, Seungjae, Jang, JoonHo, Song, Kyungwoo, Joo, Weonyoung, Kang, Wanmo, Moon, Il-Chul

论文摘要

如果我们开发一种从分类功能中删除嵌入式敏感信息的方法,则可以易动公平分类问题。分离敏感信息的这一行是通过因果推论而开发的,而因果推断使反事实的世代可以对比相反的敏感属性的情况。除了因果关系的分离之外,深层因果模型的频繁假设定义了一个潜在变量,以吸收因果图的整个外源性不确定性。但是,我们声称这种结构无法区分1)由干预措施引起的信息(即敏感变量)和2)与数据干预相关的信息。因此,本文提出了通过将外源性不确定性分解为两个潜在变量来解决这一限制的因果效应变异效应,以解决这一限制:1)与干预措施无关,或2)与干预措施相关。特别是,我们的解开方法保留了与生成反事实示例的干预措施相关的潜在变量。我们表明,我们的方法估计没有完整因果图的总效应和反事实效应。通过添加公平的正则化,DCEVAE生成了反事实公平数据集,同时丢失了较少的原始信息。此外,DCEVAE仅通过翻转敏感信息来生成自然的反事实图像。此外,我们从理论上显示了DCEVAE的协方差结构的差异以及从潜在解散的角度来看。

The problem of fair classification can be mollified if we develop a method to remove the embedded sensitive information from the classification features. This line of separating the sensitive information is developed through the causal inference, and the causal inference enables the counterfactual generations to contrast the what-if case of the opposite sensitive attribute. Along with this separation with the causality, a frequent assumption in the deep latent causal model defines a single latent variable to absorb the entire exogenous uncertainty of the causal graph. However, we claim that such structure cannot distinguish the 1) information caused by the intervention (i.e., sensitive variable) and 2) information correlated with the intervention from the data. Therefore, this paper proposes Disentangled Causal Effect Variational Autoencoder (DCEVAE) to resolve this limitation by disentangling the exogenous uncertainty into two latent variables: either 1) independent to interventions or 2) correlated to interventions without causality. Particularly, our disentangling approach preserves the latent variable correlated to interventions in generating counterfactual examples. We show that our method estimates the total effect and the counterfactual effect without a complete causal graph. By adding a fairness regularization, DCEVAE generates a counterfactual fair dataset while losing less original information. Also, DCEVAE generates natural counterfactual images by only flipping sensitive information. Additionally, we theoretically show the differences in the covariance structures of DCEVAE and prior works from the perspective of the latent disentanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源