论文标题

使用Dirichlet边界数据的全球弱解决方案的存在和独特性

Existence and uniqueness of global weak solutions to strain-limiting viscoelasticity with Dirichlet boundary data

论文作者

Bulíček, Miroslav, Patel, Victoria, Şengül, Yasemin, Süli, Endre

论文摘要

我们考虑了一种能够描述线性化但非线性固体力学模型中的某些粘弹性效应的进化方程系统。本文的本质是,涉及cauchy应力,小应变张量和对称速度梯度的构型关系以隐式形式给出。对于一大批隐性构成关系,我们确定了全球大型数据弱解决方案的存在和独特性。然后,我们关注所谓的极限应变模型类别,即已知应变张量的大小仍然很小的模型,无论Cauchy应力张量的大小如何。对于这类模型,出现了一个新的技术困难,这是凯奇压力只是其定义领域的一个可集成函数,从而导致基本函数空间是非反射性的,因此丢失了这些空间元素元素序列的弱序列。然而,即使对于这种类型的问题,我们也能够提供令人满意的存在理论,只要初始数据具有有限的弹性能,并且边界数据满足了自然的兼容条件。

We consider a system of evolutionary equations that is capable of describing certain viscoelastic effects in linearized yet nonlinear models of solid mechanics. The essence of the paper is that the constitutive relation, involving the Cauchy stress, the small strain tensor and the symmetric velocity gradient, is given in an implicit form. For a large class of implicit constitutive relations we establish the existence and uniqueness of a global-in-time large-data weak solution. We then focus on the class of so-called limiting strain models, i.e., models for which the magnitude of the strain tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor. For this class of models, a new technical difficulty arises, which is that the Cauchy stress is only an integrable function over its domain of definition, resulting in the underlying function spaces being nonreflexive and thus the weak compactness of bounded sequences of elements of these spaces is lost. Nevertheless, even for problems of this type we are able to provide a satisfactory existence theory, as long as the initial data have finite elastic energy and the boundary data fulfill natural compatibility conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源