论文标题
eppurèpiatto?宇宙计时台对空间曲率和宇宙一致性进行
Eppur è piatto? The cosmic chronometer take on spatial curvature and cosmic concordance
论文作者
论文摘要
宇宙微波背景(CMB)温度和来自Planck的极化数据的问题是,具有曲率参数$ω_k<0 $的空间封闭宇宙是最近的激烈讨论的主题。试图打破几何变性,将Planck数据与外部数据集相结合,例如Baryon声学振荡(BAO)测量,所有测量都指向空间平坦的宇宙,以与Planck的严重紧张关系,这使得结果数据集组合的问题。解决此问题需要识别一个数据集,该数据集可能会破坏几何变性,而在这些紧张局势中不会产生。我们认为,宇宙天元器(CC),膨胀率的测量值$ h(z)$来自我们追求的大规模早期型被动发展星系的相对年龄。此外,CC具有实际上没有宇宙学模型假设的其他优势。将Planck 2018 CMB温度和极化数据与最新的CC测量相结合,我们打破了几何脱位率,发现$ω__k= -0.0054 \ pm 0.0055 $,与空间平坦的宇宙一致,并且与Planck+BAO约束竞争。我们的结果在最小的参数空间扩展和CC系统方面是稳定的,我们发现普朗克和CC数据之间在非平台宇宙中没有实质性的张力,从而使结果组合可靠。我们的结果使我们能够确信宇宙在空间上对$ {\ cal o}(10^{ - 2})$等级,这一发现可能会解决持续正在进行的空间曲率辩论,并为已经非常成功的通货膨胀范式提供更多支持。
The question of whether Cosmic Microwave Background (CMB) temperature and polarization data from Planck favor a spatially closed Universe with curvature parameter $Ω_K<0$ has been the subject of recent intense discussions. Attempts to break the geometrical degeneracy combining Planck data with external datasets such as Baryon Acoustic Oscillation (BAO) measurements all point towards a spatially flat Universe, at the cost of significant tensions with Planck, which make the resulting dataset combination problematic. Settling this issue requires identifying a dataset which can break the geometrical degeneracy while not incurring in these tensions. We argue that cosmic chronometers (CC), measurements of the expansion rate $H(z)$ from the relative ages of massive early-type passively evolving galaxies, are the dataset we are after. Furthermore, CC come with the additional advantage of being virtually free of cosmological model assumptions. Combining Planck 2018 CMB temperature and polarization data with the latest CC measurements, we break the geometrical degeneracy and find $Ω_K=-0.0054 \pm 0.0055$, consistent with a spatially flat Universe and competitive with the Planck+BAO constraint. Our results are stable against minimal parameter space extensions and CC systematics, and we find no substantial tension between Planck and CC data within a non-flat Universe, making the resulting combination reliable. Our results allow us to assert with confidence that the Universe is spatially flat to the ${\cal O}(10^{-2})$ level, a finding which might possibly settle the ongoing spatial curvature debate, and lends even more support to the already very successful inflationary paradigm.