论文标题
然而,它移动:从通用动作中学习以从YouTube视频中生成IMU数据
Yet it moves: Learning from Generic Motions to Generate IMU data from YouTube videos
论文作者
论文摘要
与计算机视觉和自然语言处理相比,使用可穿戴传感器的人类活动识别(HAR)从最近的机器学习进展中受益得多。这在很大程度上是由于缺乏标记培训数据的大型存储库。在我们的研究中,我们旨在促进在线视频的使用,在线视频中,大多数活动的数量有足够的数量,并且比传感器数据更容易标记,以模拟标记的可穿戴运动传感器数据。在以前的工作中,我们已经在此方向上展示了一些初步结果,重点是非常简单的特定于活动的模拟模型和单个传感器模式(加速度规范)\ cite {10.1145/3341162.3345590}。在本文中,我们展示了如何在加速度计和陀螺仪信号的通用动作上训练回归模型,然后将其应用于目标活动的视频,以生成可用于训练和/或改善HAR模型的合成IMU数据(加速度和陀螺仪规范)。我们证明,经过回归模型生成的模拟数据训练的系统可能会落入在实际传感器数据上训练的系统的平均F1分数的10%以内。此外,我们表明,通过包括少量的实际传感器数据进行模型校准,或者简单地利用了这样一个事实,即(通常)我们可以轻松地从视频中生成更模拟的数据,而不是根据真实传感器数据收集的实际传感器数据的优势最终可以均等。
Human activity recognition (HAR) using wearable sensors has benefited much less from recent advances in Machine Learning than fields such as computer vision and natural language processing. This is to a large extent due to the lack of large scale repositories of labeled training data. In our research we aim to facilitate the use of online videos, which exists in ample quantity for most activities and are much easier to label than sensor data, to simulate labeled wearable motion sensor data. In previous work we already demonstrate some preliminary results in this direction focusing on very simple, activity specific simulation models and a single sensor modality (acceleration norm)\cite{10.1145/3341162.3345590}. In this paper we show how we can train a regression model on generic motions for both accelerometer and gyro signals and then apply it to videos of the target activities to generate synthetic IMU data (acceleration and gyro norms) that can be used to train and/or improve HAR models. We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data. Furthermore we show that by either including a small amount of real sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate much more simulated data from video than we can collect in terms of real sensor data the advantage of real sensor data can be eventually equalized.