论文标题

APAN:实时时间图嵌入的异步传播注意网络

APAN: Asynchronous Propagation Attention Network for Real-time Temporal Graph Embedding

论文作者

Wang, Xuhong, Lyu, Ding, Li, Mengjian, Xia, Yang, Yang, Qi, Wang, Xinwen, Wang, Xinguang, Cui, Ping, Yang, Yupu, Sun, Bowen, Guo, Zhenyu

论文摘要

受图形数据库中查询K-HOP邻居的时间复杂性的限制,大多数图形算法无法在线部署并执行毫秒级别的推断。这个问题极大地限制了在某些领域(例如财务欺诈检测)应用图形算法的潜力。因此,我们提出了异步传播注意网络,这是一种用于实时时间图嵌入的异步连续时间动态图算法。传统的图形模型通常执行两个串行操作:第一个图形计算,然后进行模型推断。我们将模型推理和图形计算步骤解次,以便重图查询操作不会损害模型推理的速度。广泛的实验表明,所提出的方法可以实现竞争性能,同时推理速度提高了8.7倍。

Limited by the time complexity of querying k-hop neighbors in a graph database, most graph algorithms cannot be deployed online and execute millisecond-level inference. This problem dramatically limits the potential of applying graph algorithms in certain areas, such as financial fraud detection. Therefore, we propose Asynchronous Propagation Attention Network, an asynchronous continuous time dynamic graph algorithm for real-time temporal graph embedding. Traditional graph models usually execute two serial operations: first graph computation and then model inference. We decouple model inference and graph computation step so that the heavy graph query operations will not damage the speed of model inference. Extensive experiments demonstrate that the proposed method can achieve competitive performance and 8.7 times inference speed improvement in the meantime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源