论文标题

DI-SK树上的组合培养

A combinatorial bijection on di-sk trees

论文作者

Fu, Shishuo, Lin, Zhicong, Wang, Yaling

论文摘要

Di-Sk树是一棵根生的二进制树,其节点由$ \ oplus $或$ \ aminus $标记,并且没有任何节点具有与合适的孩子相同的标签。 DI-SK树是自然的,可分开的排列。我们在Di-Sk树上构建了组合培养,证明了两个五五元$(\ lmax,\ lmin,\ desb,\ iar,\ comp)$和$(\ lmax,\ lmin,\ lmin,\ desb,\ desb,\ comp,\ comp,\ iar)$具有相同的分配分配。在这里,对于置换$π$,$ \ lmax(π)/\ lmin(π)$是$π$ $π$和$ \ desb(π)$的一组值的值,是$π$的下降底部,而$ \ comp(comp(comp(fime)$)的数字(π)$ undecon(π)$(π)$(π)$(π)$ outs(π)$ outs(π)$ ous outs(π)和π$π; $π$的初始上升运行。 有趣的是,我们的两者培训专门针对$ 312 $的避免排列的培训,该排列提供了(最多可(延长经典){\ em knuth--richards bioviond})Rubey(2016)的替代方法,该方法宣称两种三倍的$(\ lmax,\ lmax,\ iar,\ comp)$(\ comp)$(\ comp)$(\ comp) $ 321 $ - 避免排列。 Rubey的结果是由于Adin-bagno-Roichman引起的等分分配的对称扩展,这意味着$ 321 $的$ 321 $ - 避免零件数量的零件的排列是Schur的。 最终提出了有关树遍历的各种统计数据的一些等分分配结果。

A di-sk tree is a rooted binary tree whose nodes are labeled by $\oplus$ or $\ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di-sk trees proving the two quintuples $(\LMAX,\LMIN,\DESB,\iar,\comp)$ and $(\LMAX,\LMIN,\DESB,\comp,\iar)$ have the same distribution over separable permutations. Here for a permutation $π$, $\LMAX(π)/\LMIN(π)$ is the set of values of the left-to-right maxima/minima of $π$ and $\DESB(π)$ is the set of descent bottoms of $π$, while $\comp(π)$ and $\iar(π)$ are respectively the number of components of $π$ and the length of initial ascending run of $π$. Interestingly, our bijection specializes to a bijection on $312$-avoiding permutations, which provides (up to the classical {\em Knuth--Richards bijection}) an alternative approach to a result of Rubey (2016) that asserts the two triples $(\LMAX,\iar,\comp)$ and $(\LMAX,\comp,\iar)$ are equidistributed on $321$-avoiding permutations. Rubey's result is a symmetric extension of an equidistribution due to Adin--Bagno--Roichman, which implies the class of $321$-avoiding permutations with a prescribed number of components is Schur positive. Some equidistribution results for various statistics concerning tree traversal are presented in the end.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源