论文标题

光活性聚合物中的光结合相互作用的几何连续框架I。变化设置

A Geometrically Exact Continuum Framework for Light-Matter Interaction in Photo-Active Polymers I. Variational Setting

论文作者

Mehnert, M, Oates, W, Steinmann, P

论文摘要

分子光切换为,例如,偶氮苯分子嵌入到聚合物基质中时,可以在暴露于某些波长的光线下机械地响应光活性聚合物化合物。光学力学,即光活性聚合物中的光 - 互动具有巨大的希望,例如,光驱动执行器的远程和无接触式激活。在一系列较早的贡献中,Oates等人。为捕获偶氮苯聚合物化合物的耦合电,电子和机械问题开发了成功的连续公式,从而主要集中于几何线性化的运动学。在该公式的基础上,我们在这里探讨了基于Dirichlet和Hamilton的原理以及汉密尔顿方程的几何精确连续框架的变异设置。因此,在治疗耗散病例时,我们通过适合耗散电位的融合来求助于各种变异问题的增量版本。特别是,即使在充满活力的情况下,几何精确的光学机械的哈密顿式设置甚至在很大程度上都在很大程度上探索,这可以说是因为相应的拉格朗日人在迪拉克的意义上是堕落的。而且,通常,耗散动力学系统的哈密顿式设置本身就是持续的辩论。在这一贡献中,通过提倡针对光学力学的耗散案例举例说明哈密顿量设置的新型增量版本,我们还旨在统一散发性动力学系统的变异方法。综上所述,光学力学的几何连续框架的变异设置为即将进行的理论和数值分析铺平了道路。

Molecular photo-switches as, e.g., azobenzene molecules allow, when embedded into a polymeric matrix, for photo-active polymer compounds responding mechanically when exposed to light of certain wavelength. Photo-mechanics, i.e. light-matter interaction in photo-active polymers holds great promise for, e.g., remote and contact-free activation of photo-driven actuators. In a series of earlier contributions, Oates et al. developed a successful continuum formulation for the coupled electric, electronic and mechanical problem capturing azobenzene polymer compounds, thereby mainly focussing on geometrically linearized kinematics. Building on that formulation, we here explore the variational setting of a geometrically exact continuum framework based on Dirichlet's and Hamilton's principle as well as, noteworthy, Hamilton's equations. Thereby, when treating the dissipative case, we resort to incremental versions of the various variational problems via suited incorporation of a dissipation potential. In particular, the Hamiltonian setting of geometrically exact photo-mechanics is up to now largely under-explored even for the energetic case, arguably since the corresponding Lagrangian is degenerate in Dirac's sense. Moreover, in general, the Hamiltonian setting of dissipative dynamical systems is a matter of ongoing debate per se. In this contribution, by advocating a novel incremental version of the Hamiltonian setting exemplified for the dissipative case of photo-mechanics, we aim to also unify the variational approach to dissipative dynamical systems. Taken together, the variational setting of a geometrically exact continuum framework of photo-mechanics paves the way for forthcoming theoretical and numerical analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源