论文标题
在O(1)时间中使用O(n^2)处理器进行搜索和排序
Searching and Sorting with O(n^2) processors in O(1) time
论文作者
论文摘要
并行计算机系统中处理元素数量(PE)的扩散以及算法更广泛的并行化的使用导致处理器通信主导了VLSI芯片空间。本文提出了一种新的体系结构,通过使用简单的交叉点开关将PES而不是复杂的互连网络来克服此问题。基于\ cite {oruc2016 self}中描述的循环置换接线思想,该配对导致$ n(n-1)/2 $处理元素和许多跨点的线性跨点阵列。我们通过为其设计快速搜索和分类算法来证明这种新的并行体系结构的多功能性。特别是,我们表明,找到最低,最大和搜索$ n $元素的列表都可以在$ o(1)$ time中使用$ o(n)$ fandin的基本逻辑大门,以及$ o(\ lg n)$ time in $ o(o(lg n)$ o(1)$ fan fan。我们进一步表明,使用基本逻辑门($ o(n)$ o(n)$ fanesl-in和Threshold Logic Gates进行排序,也可以在$ o(1)$时间内以$ o(1)$时间进行排序。如果仅使用$ o(1)$ fan的基本逻辑门,则排序时间会增加到$ o(\ lg n \ lg \ lg n)$。该算法可以在$ o(1)$ time中找到$ n $元素之间的最大值,然后在$ o(\ lg n(\ lg \ lg n))$ o(\ lg \ lg n))$ time中排序$ n $元素。此外,我们还展示了如何在相同的时间复杂性顺序中处理其他基本查询。
The proliferation of number of processing elements (PEs) in parallel computer systems, along with the use of more extensive parallelization of algorithms causes the interprocessor communications dominate VLSI chip space. This paper proposes a new architecture to overcome this issue by using simple crosspoint switches to pair PEs instead of a complex interconnection network. Based on the cyclic permutation wiring idea described in \cite{oruc2016self}, this pairing leads to a linear crosspoint array of $n(n-1)/2$ processing elements and as many crosspoints. We demonstrate the versatility of this new parallel architecture by designing fast searching and sorting algorithms for it. In particular, we show that finding a minimum, maximum, and searching a list of $n$ elements can all be performed in $O(1)$ time with elementary logic gates with $O(n)$ fan-in, and in $O(\lg n)$ time with $O(1)$ fan-in. We further show that sorting a list of $n$ elements can also be carried out in $O(1)$ time using elementary logic gates with $O(n)$ fan-in and threshold logic gates. The sorting time increases to $O(\lg n\lg\lg n)$ if only elementary logic gates with $O(1)$ fan-in are used. The algorithm can find the maximum among $n$ elements in $O(1)$ time, and sort $n$ elements in $O(\lg n (\lg\lg n))$ time. In addition, we show how other fundamental queries can be handled within the same order of time complexities.