论文标题
熵稳定的模态不连续的Galerkin方案和可压缩Navier-Stokes方程的壁边界条件
Entropy stable modal discontinuous Galerkin schemes and wall boundary conditions for the compressible Navier-Stokes equations
论文作者
论文摘要
熵稳定的方案确保物理上有意义的数值解决方案在适当的边界条件下还满足了半混凝土熵的不等式。在这项工作中,我们在可压缩的Navier-Stokes方程中描述了粘性术语的离散化,该方程式可以简单明了刺激熵稳定的无滑动(绝热和等温)和反射性(对称性)壁边界条件,用于不连续的Galerkin(DG)离散。数值结果证实了所提出方法的鲁棒性和准确性。
Entropy stable schemes ensure that physically meaningful numerical solutions also satisfy a semi-discrete entropy inequality under appropriate boundary conditions. In this work, we describe a discretization of viscous terms in the compressible Navier-Stokes equations which enables a simple and explicit imposition of entropy stable no-slip (adiabatic and isothermal) and reflective (symmetry) wall boundary conditions for discontinuous Galerkin (DG) discretizations. Numerical results confirm the robustness and accuracy of the proposed approaches.