论文标题

$ l_p $ - 最大的规律性估算二阶随机偏微分方程的解决方案的矩

An $L_p$-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations

论文作者

Kim, Ildoo

论文摘要

我们获得了以下二阶随机偏微分方程(SPDE)的唯一性和解决方案$ u $:\ begin {align} \ label {abs eqn} du = \ left(\ bar a^{ij}(ω,t)u_ {x^ix^j} + f \ right)dt + g^k dw^k_t,\ quad t t \ in(0,t); \quad u(0,\cdot)=0, \end{align} where $T \in (0,\infty)$, $w^k$ $(k=1,2,\ldots)$ are independent Wiener processes, $(\bar a^{ij}(ω,t))$ is a (predictable) nonnegative symmetric matrix valued stochastic process such that $$ κ|ξ|^2 \ leq \ bar a^{ij}(ω,t)ξ^iξ^iξ^j \ leq k | eq^|^2 \ qquad \ qquad \ forall(ω,t,t,ξ)\ inω\ times(0,t) (0,\ infty)$,$$ f \ in l_p \ left(((0,t)\ times {\ mathbf {r}}}^d,dt \ times dx; l_r(ω,{\ shatscr {f}},dp),dp),dp),dp)\ right) {\ Mathbf {r}}^d,dt \ times dx;

We obtain uniqueness and existence of a solution $u$ to the following second-order stochastic partial differential equation (SPDE) : \begin{align} \label{abs eqn} du= \left( \bar a^{ij}(ω,t)u_{x^ix^j}+ f \right)dt + g^k dw^k_t, \quad t \in (0,T); \quad u(0,\cdot)=0, \end{align} where $T \in (0,\infty)$, $w^k$ $(k=1,2,\ldots)$ are independent Wiener processes, $(\bar a^{ij}(ω,t))$ is a (predictable) nonnegative symmetric matrix valued stochastic process such that $$ κ|ξ|^2 \leq \bar a^{ij}(ω,t) ξ^i ξ^j \leq K |ξ|^2 \qquad \forall (ω,t,ξ) \in Ω\times (0,T) \times {\mathbf{R}}^d $$ for some $κ, K \in (0,\infty)$, $$ f \in L_p\left( (0,T) \times {\mathbf{R}}^d, dt \times dx ; L_r(Ω, {\mathscr{F}} ,dP) \right), $$ and $$ g, g_x \in L_p\left( (0,T) \times {\mathbf{R}}^d, dt \times dx ; L_r(Ω, {\mathscr{F}} ,dP; l_2) \right) $$ with $2 \leq r \leq p < \infty$ and appropriate measurable conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源