论文标题
$ A $ Quiver品种的特征周期和半人道基础
The characteristic cycles and semi-canonical bases on type $A$ quiver variety
论文作者
论文摘要
在本文中,我们研究了geiss-leclerc-schr {Ö} er的猜想,这是weyl oft案例中卢斯蒂格经典猜想的类似物。它涉及通过特征周期的规范基础和半规范基础之间的关系。我们为这种猜想制定了一种方法,并证明了$ a_2 $ Quiver的类型。在一般的A型情况下,我们减少了猜想,以表明某些附近的周期具有消失的Euler特征。
In this article we study a conjecture of Geiss-Leclerc-Schr{ö}er, which is an analogue of a classical conjecture of Lusztig in the Weyl group case. It concerns the relation between canonical basis and semi-canonical basis through the characteristic cycles. We formulate an approach to this conjecture and prove it for type $A_2$ quiver. In general type A case, we reduce the conjecture to show that certain nearby cycles have vanishing Euler characteristic.