论文标题
范德华半导体中的磁耦合内置电场控制
Built-in Electric-Field-Control of Magnetic Coupling in van der Waals semiconductors
论文作者
论文摘要
二维(2D)半导体中磁性的电控制对于新兴的纳米级低衰减自旋装置引起了极大的关注。在这里,我们提出了一种通用方法,即通过通过超级原子离子的吸附产生的内置电场来调整范德华(VDW)2D磁性半导体的各向异性。使用第一原理计算,我们预测,当超级原子阳离子和阴离子之间夹在2D半导体中时,铁电磁(FM)耦合的显着增强和磁各向异性会发生很大变化。磁耦合直接受内置电场的影响,该电场提高了介导的配体轨道的能级并增强了超交换相互作用。这些发现将是基于VDW 2D半导体的离子门控控制的铁磁体和磁性的。
Electrical control of magnetism in a two-dimensional (2D) semiconductor is of great interest for emerging nanoscale low-dissipation spintronic devices. Here, we propose a general approach of tuning magnetic coupling and anisotropy of a van der Waals (vdW) 2D magnetic semiconductor via a built-in electric field generated by the adsorption of superatomic ions. Using first-principles calculations, we predict a significant enhancement of ferromagnetic (FM) coupling and a great change of magnetic anisotropy in 2D semiconductors when they are sandwiched between superatomic cations and anions. The magnetic coupling is directly affected by the built-in electric field, which lifts the energy levels of mediated ligands' orbitals and enhances the super-exchange interactions. These findings will be of interest for ionic gating controlled ferromagnets and magnetoelectronics based on vdW 2D semiconductors.