论文标题

通过高通量密度的功能理论和机器学习发现具有极端工作功能的稳定表面

Discovery of stable surfaces with extreme work functions by high-throughput density functional theory and machine learning

论文作者

Schindler, Peter, Antoniuk, Evan R., Cheon, Gowoon, Zhu, Yanbing, Reed, Evan J.

论文摘要

功能是确定电子逃脱材料表面所需的能量的关键表面特性。该特性对于热能转换,异质结构中的带对齐和电子发射设备至关重要。在这里,我们使用密度功能理论(DFT)提出了高通量工作流程,以计算我们从3,716个散装材料中创建的33,631个平板(58,332个工作函数)的工作函数和裂解能,包括最高三元化合物。我们计算的表面特性的材料数量超过了先前最大的数据库材料项目,$ \ sim $ 27。在工作函数分布的尾端,我们分别识别出具有超低(<2 eV)和超高(> 7 eV)工作函数的34和56表面。此外,我们发现,$(100)$ -BA-O的表面Bamoo $ _3 $和Ag $ _2 $ F的$(001)$ - f表面具有记录 - 低(1.25 eV)和创纪录的(9.06 ev)稳态工作功能,分别不需要涂料。基于此数据库,我们开发了一种基于物理的方法来表面表面并使用监督的机器学习来预测工作功能。我们发现功能的物理选择远远超过了模型的选择。我们的随机森林模型达到了0.09 eV的平均绝对测试误差,比基线好6倍,并且与DFT的准确性相当。该替代模型可以在庞大的化学空间中快速预测工作函数($ \ sim 10^5 $),并促进了具有极端工作功能的材料表面,用于能量转换,电子应用以及在二维设备中的触点。

The work function is the key surface property that determines how much energy is required for an electron to escape the surface of a material. This property is crucial for thermionic energy conversion, band alignment in heterostructures, and electron emission devices. Here, we present a high-throughput workflow using density functional theory (DFT) to calculate the work function and cleavage energy of 33,631 slabs (58,332 work functions) that we created from 3,716 bulk materials, including up to ternary compounds. The number of materials for which we calculated surface properties surpasses the previously largest database, the Materials Project, by a factor of $\sim$27. On the tail ends of the work function distribution we identify 34 and 56 surfaces with an ultra-low (<2 eV) and ultra-high (>7 eV) work function, respectively. Further, we discover that the $(100)$-Ba-O surface of BaMoO$_3$ and the $(001)$-F surface of Ag$_2$F have record-low (1.25 eV) and record-high (9.06 eV) steady-state work functions without requiring coatings, respectively. Based on this database we develop a physics-based approach to featurize surfaces and use supervised machine learning to predict the work function. We find that physical choice of features improves prediction performance far more than choice of model. Our random forest model achieves a mean absolute test error of 0.09 eV, which is more than 6 times better than the baseline and comparable to the accuracy of DFT. This surrogate model enables rapid predictions of the work function ($\sim 10^5$ faster than DFT) across a vast chemical space and facilitates the discovery of material surfaces with extreme work functions for energy conversion, electronic applications, and contacts in 2-dimensional devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源