论文标题

地标和IMU数据融合:系统收敛几何非线性观察者,用于大满贯和速度偏差

Landmark and IMU Data Fusion: Systematic Convergence Geometric Nonlinear Observer for SLAM and Velocity Bias

论文作者

Hashim, Hashim A., Eltoukhy, Abdelrahman E. E.

论文摘要

当自主机器人的姿势(\ textit {i.e}。,态度和位置)及其环境都不知道时,适用于案例的导航解决方案。同时定位和映射(SLAM)通过同时映射环境并观察机器人相对于地图的姿势来满足这一需求。这项工作提出了一个在$ \ mathbb {slam} _ {n} \ left(3 \ right)$(以系统收敛为特征)$ \ mathbb {slam} _ {slam} _ {slam} _ {slam} _ {slam}的歧管上的非线性观察者,旨在模仿真实SLAM问题的非线性运动动力学。系统误差被限制为在已知的大型集合中启动,并系统地衰减以在已知的小型集合中沉降。确保所提出的估计量可以实现预定义的瞬态和稳态性能,并通过直接使用角度和转换速度,地标,地标和信息通过惯性测量单元(IMU)收集的信息,消除速度测量中不可避免地存在的偏差。通过测试二次手机收集的现实世界数据集上提出的解决方案获得的实验结果证明了观察者估计六度自由度(6 DOF)机器人姿势并将未知地标在三维(3D)空间中定位的能力。关键字:同时定位和映射,猛击的非线性滤波器,用于矩阵谎言组的非线性滤波器,姿势,渐近稳定性,规定的性能,自适应估计,特征,特征,惯性测量单元,惯性视觉单元,IMU,se(3),(3),SO(3),噪声。

Navigation solutions suitable for cases when both autonomous robot's pose (\textit{i.e}., attitude and position) and its environment are unknown are in great demand. Simultaneous Localization and Mapping (SLAM) fulfills this need by concurrently mapping the environment and observing robot's pose with respect to the map. This work proposes a nonlinear observer for SLAM posed on the manifold of the Lie group of $\mathbb{SLAM}_{n}\left(3\right)$, characterized by systematic convergence, and designed to mimic the nonlinear motion dynamics of the true SLAM problem. The system error is constrained to start within a known large set and decay systematically to settle within a known small set. The proposed estimator is guaranteed to achieve predefined transient and steady-state performance and eliminate the unknown bias inevitably present in velocity measurements by directly using measurements of angular and translational velocity, landmarks, and information collected by an inertial measurement unit (IMU). Experimental results obtained by testing the proposed solution on a real-world dataset collected by a quadrotor demonstrate the observer's ability to estimate the six-degrees-of-freedom (6 DoF) robot pose and to position unknown landmarks in three-dimensional (3D) space. Keywords: Simultaneous Localization and Mapping, Nonlinear filter for SLAM, Nonlinear filter for SLAM on Matrix Lie group, pose, asymptotic stability, prescribed performance, adaptive estimate, feature, inertial measurement unit, inertial vision unit, IMU, SE(3), SO(3), noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源