论文标题

合成图像渲染解决了深度学习纳米颗粒分段中的注释问题

Synthetic Image Rendering Solves Annotation Problem in Deep Learning Nanoparticle Segmentation

论文作者

Mill, Leonid, Wolff, David, Gerrits, Nele, Philipp, Patrick, Kling, Lasse, Vollnhals, Florian, Ignatenko, Andrew, Jaremenko, Christian, Huang, Yixing, De Castro, Olivier, Audinot, Jean-Nicolas, Nelissen, Inge, Wirtz, Tom, Maier, Andreas, Christiansen, Silke

论文摘要

纳米颗粒由于人造过程而出现在各种环境中,这引起了人们对它们对环境和人类健康的影响的担忧。为了进行适当的风险评估,需要对粒子特征进行精确和统计相关的分析(例如大小,形状和组成),这将在自动图像分析程序中大大受益。尽管深度学习在对象检测任务中显示出令人印象深刻的结果,但其适用性受到代表性,实验收集和手动注释培训数据的限制。在这里,我们提出了一种优雅,灵活和多功能的方法,可以绕过这一昂贵且乏味的数据采集过程。我们表明,使用渲染软件可以生成逼真的合成训练数据来培训最先进的深神经网络。使用这种方法,我们得出了一种分割精度,该精度可与毒理学相关的金属氧化物纳米粒子集合相媲美,我们选择了这一点。我们的研究铺平了在多种成像技术(例如显微镜和光谱)中使用深度学习进行深度学习的方式,用于多种研究和应用,包括检测塑料微粒子和纳米颗粒。

Nanoparticles occur in various environments as a consequence of man-made processes, which raises concerns about their impact on the environment and human health. To allow for proper risk assessment, a precise and statistically relevant analysis of particle characteristics (such as e.g. size, shape and composition) is required that would greatly benefit from automated image analysis procedures. While deep learning shows impressive results in object detection tasks, its applicability is limited by the amount of representative, experimentally collected and manually annotated training data. Here, we present an elegant, flexible and versatile method to bypass this costly and tedious data acquisition process. We show that using a rendering software allows to generate realistic, synthetic training data to train a state-of-the art deep neural network. Using this approach, we derive a segmentation accuracy that is comparable to man-made annotations for toxicologically relevant metal-oxide nanoparticle ensembles which we chose as examples. Our study paves the way towards the use of deep learning for automated, high-throughput particle detection in a variety of imaging techniques such as microscopies and spectroscopies, for a wide variety of studies and applications, including the detection of plastic micro- and nanoparticles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源