论文标题
基于WiFi的通道冲动响应估计和通过多波段剪接定位
WiFi-Based Channel Impulse Response Estimation and Localization via Multi-Band Splicing
论文作者
论文摘要
使用商品WiFi数据来进行室内定位,对象识别和跟踪以及通道的声音,最近引起了人们的关注。我们研究了商品WiFi通道状态信息(CSI)的通道脉冲响应(CIR)估计的问题。本设置中CIR估计方法的准确性受到可用的通道带宽以及基础硬件引起的各种CSI畸变的限制。我们提出了一种多带剪接方法,该方法通过将CSI数据组合到多个频段中来增加通道带宽。为了补偿CSI扭曲,我们开发了每带处理算法,该算法能够估算失真参数并将其删除以产生“清洁” CSI。该算法结合了原子规范降低稀疏恢复方法来利用通道稀疏性。在M频带上拼接清洁CSI,我们使用正交匹配追踪(OMP)作为估计方法来恢复具有高(m折)分辨率的稀疏CIR。与文献中的先前作品不同,我们的方法对CIR的任何限制假设(除了被广泛接受的稀疏假设)或任何临时处理以清除失真。从经验上,我们表明,所提出的方法在本地化准确性方面优于艺术状态。
Using commodity WiFi data for applications such as indoor localization, object identification and tracking and channel sounding has recently gained considerable attention. We study the problem of channel impulse response (CIR) estimation from commodity WiFi channel state information (CSI). The accuracy of a CIR estimation method in this setup is limited by both the available channel bandwidth as well as various CSI distortions induced by the underlying hardware. We propose a multi-band splicing method that increases channel bandwidth by combining CSI data across multiple frequency bands. In order to compensate for the CSI distortions, we develop a per-band processing algorithm that is able to estimate the distortion parameters and remove them to yield the "clean" CSI. This algorithm incorporates the atomic norm denoising sparse recovery method to exploit channel sparsity. Splicing clean CSI over M frequency bands, we use orthogonal matching pursuit (OMP) as an estimation method to recover the sparse CIR with high (M-fold) resolution. Unlike previous works in the literature, our method does not appeal to any limiting assumption on the CIR (other than the widely accepted sparsity assumption) or any ad hoc processing for distortion removal. We show, empirically, that the proposed method outperforms the state of the art in terms of localization accuracy.