论文标题

旋转的无限深电位及其相干状态的一些结果

Some results on the rotated infinitely deep potential and its coherent states

论文作者

Bagarello, Fabio

论文摘要

Swanson模型是量子力学中完全可解决的模型,具有明显的非自我拥护者Hamiltonian,其特征值都是真实的。可以通过合适的梯子操作员轻松推导其特征向量。这是因为在进行合适的配置空间旋转后,Swanson Hamiltonian与标准量子谐波振荡器的连接深度连接。在本文中,我们考虑了不同量子系统的旋转版本,即无限深的潜力,我们考虑了这种旋转的某些后果。特别是,我们表明,与斯旺森模型有关,主要是因为在这里工作的技术需求,在这里使用不同的希尔伯特空间,而不是留在$ \ lc^2(\ mathbb {r})$中。我们还为该系统构建了Gazeau-Klauder连贯状态,并分析其属性。

The Swanson model is an exactly solvable model in quantum mechanics with a manifestly non self-adjoint Hamiltonian whose eigenvalues are all real. Its eigenvectors can be deduced easily, by means of suitable ladder operators. This is because the Swanson Hamiltonian is deeply connected with that of a standard quantum Harmonic oscillator, after a suitable rotation in configuration space is performed. In this paper we consider a rotated version of a different quantum system, the infinitely deep potential, and we consider some of the consequences of this rotation. In particular, we show that differences arise with respect to the Swanson model, mainly because of the technical need of working, here, with different Hilbert spaces, rather than staying in $\Lc^2(\mathbb{R})$. We also construct Gazeau-Klauder coherent states for the system, and analyse their properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源