论文标题

重力波的多重膨胀:从谐波到邦迪坐标

Multipole Expansion of Gravitational Waves: from Harmonic to Bondi coordinates

论文作者

Blanchet, Luc, Compère, Geoffrey, Faye, Guillaume, Oliveri, Roberto, Seraj, Ali

论文摘要

我们将多极后科斯基近似值中的分离物源的度量从谐波(de donder)坐标转换为辐射Newman-Unti(NU)坐标。为了线性化顺序,我们获得了NU度量作为源的质量和当前多极矩的功能,有效地在源的外部区域有效。施加适当的边界条件,我们恢复了广义的债券van der burg-metzner-sachs残留对称组。对于二次顺序,在质量四极杆相互作用的情况下,我们确定了NU度量中引力波尾的贡献,并证明按半径范围的公制膨胀是正常的。质量和角动量方面以及邦迪·剪切物从度量标准中读取。它们是由辐射四极力矩(包括尾术语)给出的。

We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the mass and current multipole moments of the source, valid all-over the exterior region of the source. Imposing appropriate boundary conditions we recover the generalized Bondi-van der Burg-Metzner-Sachs residual symmetry group. To quadratic order, in the case of the mass-quadrupole interaction, we determine the contributions of gravitational-wave tails in the NU metric, and prove that the expansion of the metric in terms of the radius is regular to all orders. The mass and angular momentum aspects, as well as the Bondi shear, are read off from the metric. They are given by the radiative quadrupole moment including the tail terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源