论文标题

关于请求 - 旅行车分配问题

On the Request-Trip-Vehicle Assignment Problem

论文作者

Mori, J. Carlos Martínez, Samaranayake, Samitha

论文摘要

请求 - 旅行车分配问题是流行的在线车辆路由的流行分解策略的核心。在此框架中,分批进行分配,以利用车辆之间的任何共享性和传入的旅行请求。我们研究天然ILP配方及其LP松弛。我们的主要结果是一种基于LP的随机圆形算法,每当实例可行时,都会利用温和的假设返回一项任务,该作业:i)预期成本最多是最佳解决方案,而ii)预期的无符号请求的预期分数最多为$ 1/e $。如果旅行车分配成本为$α$ -Approximate,我们的预期成本额外支付$α$。我们可以通过考虑问题的罚款版本来放松可行性要求,在该版本中,为每个未分配的请求支付罚款。我们发现,每当在多个回合后反复反复分配请求时,概率很高,这是按照LP解决方案的顺序而不是由于舍入误差的。我们还引入了一个由我们的随机技术启发的确定性四舍五入启发式启发。我们的计算实验表明,我们的四舍五入算法在减少的计算时间时实现了与ILP相似的性能,从而在我们的理论保证方面有所改善。这样做的原因是,尽管分配问题在理论上很困难,但自然的LP放松在实践中往往非常紧张。

The request-trip-vehicle assignment problem is at the heart of a popular decomposition strategy for online vehicle routing. In this framework, assignments are done in batches in order to exploit any shareability among vehicles and incoming travel requests. We study a natural ILP formulation and its LP relaxation. Our main result is an LP-based randomized rounding algorithm that, whenever the instance is feasible, leverages mild assumptions to return an assignment whose: i) expected cost is at most that of an optimal solution, and ii) expected fraction of unassigned requests is at most $1/e$. If trip-vehicle assignment costs are $α$-approximate, we pay an additional factor of $α$ in the expected cost. We can relax the feasibility requirement by considering the penalty version of the problem, in which a penalty is paid for each unassigned request. We find that, whenever a request is repeatedly unassigned after a number of rounds, with high probability it is so in accordance with the sequence of LP solutions and not because of a rounding error. We additionally introduce a deterministic rounding heuristic inspired by our randomized technique. Our computational experiments show that our rounding algorithms achieve a performance similar to that of the ILP at a reduced computation time, far improving on our theoretical guarantee. The reason for this is that, although the assignment problem is hard in theory, the natural LP relaxation tends to be very tight in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源