论文标题
Nilpotent lie代数的复杂结构与一维中心
Complex structures on nilpotent Lie algebras with one-dimensional center
论文作者
论文摘要
我们将实体八度的nilpotent Lie代数分类,并且最小的中心容纳了一个复杂的结构。此外,对于每一个这样的nilpotent Lie代数$ \ mathfrak {g} $,我们描述了$ \ mathfrak {g} $上的复杂结构的空间。作为一种应用,具有非平凡的Abelian $ J $ invariant理想的Nilpotent Lie代数被分类多达八个维度。
We classify the nilpotent Lie algebras of real dimension eight and minimal center that admit a complex structure. Furthermore, for every such nilpotent Lie algebra $\mathfrak{g}$, we describe the space of complex structures on $\mathfrak{g}$ up to isomorphism. As an application, the nilpotent Lie algebras having a non-trivial abelian $J$-invariant ideal are classified up to eight dimensions.