论文标题

在大型强子对撞机上搜索具有拓扑特征的共振的机器学习方法

Machine learning approach for the search of resonances with topological features at the Large Hadron Collider

论文作者

Dahbi, Salah-eddine, Choma, Joshua, Mellado, Bruce, Mokgatitswane, Gaogalalwe, Ruan, Xifeng, Lieberman, Benjamin, Celik, Turgay

论文摘要

共振的观察是超出标准模型的新物理学的明确证据,该物理学是大型强子对撞机(LHC)的标准模型。到目前为止,包容性和依赖模型的搜索尚未提供新的共鸣的证据,表明这些共振可能是由微妙的拓扑驱动的。在这里,我们使用基于弱监督的机器学习技术来执行搜索。基于混合样本的弱监督可用于搜索几乎没有或根本没有生产机制知识的共振。此外,它具有一个优势,即边带或控制区可用于有效地对背景建模,最少依赖模拟。但是,仅仅在识别多维兴趣空间的角落方面,仅弱监督就会效率低下。取而代之的是,我们提出了一种搜索涉及基于签名和拓扑的分类过程的新共鸣的方法。在此分类之后,应用了薄弱的监督与深神网络算法的结合。评估了该策略的性能,以包含在LHC的特定生产模式下量身定制的相位空间的独家空间区域,以产生Sm Higgs玻色子腐烂。在验证了该方法提取不同SM HIGGS玻色子信号机制的能力之后,为LHC设置了在高质量最终状态中寻找新现象的搜索。

The observation of resonances is unequivocal evidence of new physics beyond the Standard Model at the Large Hadron Collider (LHC). So far, inclusive and model dependent searches have not provided evidence of new resonances, indicating that these could be driven by subtle topologies. Here, we use machine learning techniques based on weak supervision to perform searches. Weak supervision based on mixed samples can be used to search for resonances with little or no prior knowledge on the production mechanism. Also, it offers the advantage that sidebands or control regions can be used to effectively model backgrounds with minimal reliance on simulations. However, weak supervision alone is found to be highly inefficient in identifying corners of the multi-dimensional space of interest. Instead, we propose an approach to search for new resonances that involves a classification procedure that is signature and topology based. A combination of weak supervision with Deep Neural Network algorithms are applied following this classification. The performance of this strategy is evaluated on the production of SM Higgs boson decaying to a pair of photons inclusively and in exclusive regions of phase space tailored for specific production modes at the LHC. After verifying the ability of the methodology to extract different SM Higgs boson signal mechanisms, a search for new phenomena in high-mass final states is setup for the LHC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源