论文标题
通过数据捐赠收集数字跟踪数据
Digital trace data collection through data donation
论文作者
论文摘要
意外的机构:法律已经创建了一种潜在的社会科学数据收集和调查方法。欧盟2018年通用数据保护法规(GDPR)的第15条规定,个人可以通过电子访问其个人数据的副本进行电子访问,而所有主要的数字平台现在符合该法律,通过向用户提供“数据下载软件包”(DDPS)。通过自愿捐赠DDP,可以在同意的情况下获得和分析公民数字生活期间公共和私人实体收集的所有数据。因此,同意的DDP为广泛的新研究机会开辟了道路。但是,尽管这种全新的数据收集方法无疑将在未来几年中获得流行,但它也带有其自身的代表性和测量质量问题,通常通过错误框架进行系统地评估。因此,在本文中,我们为使用DDPS提供了数字跟踪数据收集的蓝图,并为此类项目设计了一个“总错误框架”。我们通过数据捐赠收集数字跟踪数据的错误框架旨在使用DDP促进高质量的社会科学研究,同时严格地反映其独特的方法论挑战和错误源。此外,我们还提供质量控制清单,以指导研究人员利用这种新的调查方式提供的巨大机会。
A potentially powerful method of social-scientific data collection and investigation has been created by an unexpected institution: the law. Article 15 of the EU's 2018 General Data Protection Regulation (GDPR) mandates that individuals have electronic access to a copy of their personal data, and all major digital platforms now comply with this law by providing users with "data download packages" (DDPs). Through voluntary donation of DDPs, all data collected by public and private entities during the course of citizens' digital life can be obtained and analyzed to answer social-scientific questions - with consent. Thus, consented DDPs open the way for vast new research opportunities. However, while this entirely new method of data collection will undoubtedly gain popularity in the coming years, it also comes with its own questions of representativeness and measurement quality, which are often evaluated systematically by means of an error framework. Therefore, in this paper we provide a blueprint for digital trace data collection using DDPs, and devise a "total error framework" for such projects. Our error framework for digital trace data collection through data donation is intended to facilitate high quality social-scientific investigations using DDPs while critically reflecting its unique methodological challenges and sources of error. In addition, we provide a quality control checklist to guide researchers in leveraging the vast opportunities afforded by this new mode of investigation.