论文标题

与Kornia的可区分数据增加

Differentiable Data Augmentation with Kornia

论文作者

Shi, Jian, Riba, Edgar, Mishkin, Dmytro, Moreno, Francesc, Nicolaou, Anguelos

论文摘要

在本文中,我们对空间(2D)和体积(3D)张量的Kornia可区分数据增强(DDA)模块进行了综述。该模块利用可与Kornia的可区分视觉解决方案,目的是将数据增强(DA)管道和策略集成到现有的Pytorch组件(例如,自动射击以实现可区分性,最佳的优化)。此外,我们还提供了一个基准,以比较不同的DA框架,并为使用Kornia DDA的许多方法进行简短的评论。

In this paper we present a review of the Kornia differentiable data augmentation (DDA) module for both for spatial (2D) and volumetric (3D) tensors. This module leverages differentiable computer vision solutions from Kornia, with an aim of integrating data augmentation (DA) pipelines and strategies to existing PyTorch components (e.g. autograd for differentiability, optim for optimization). In addition, we provide a benchmark comparing different DA frameworks and a short review for a number of approaches that make use of Kornia DDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源